首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   495篇
  免费   77篇
  国内免费   111篇
测绘学   36篇
大气科学   15篇
地球物理   253篇
地质学   272篇
海洋学   54篇
天文学   8篇
综合类   14篇
自然地理   31篇
  2024年   2篇
  2023年   4篇
  2022年   17篇
  2021年   18篇
  2020年   21篇
  2019年   17篇
  2018年   23篇
  2017年   19篇
  2016年   18篇
  2015年   18篇
  2014年   26篇
  2013年   31篇
  2012年   35篇
  2011年   24篇
  2010年   24篇
  2009年   35篇
  2008年   46篇
  2007年   41篇
  2006年   34篇
  2005年   31篇
  2004年   28篇
  2003年   18篇
  2002年   16篇
  2001年   23篇
  2000年   18篇
  1999年   12篇
  1998年   22篇
  1997年   12篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
排序方式: 共有683条查询结果,搜索用时 875 毫秒
81.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   
82.
Coupling between lateral and torsional motions may lead to much larger edge deformations in asymmetric-plan systems compared to systems with a symmetric plan. Supplemental viscous damping has been found to be effective in reducing deformations in the symmetric-plan system. This investigation examined how supplemental damping affects the edge deformations in asymmetric-plan systems. First, the parameters that characterize supplemental viscous damping and its plan-wise distribution were identified, and then the effects of these parameters on edge deformations were investigated. It was found that supplemental damping reduces edge deformations and that reductions by a factor of up three are feasible with proper selection of system parameters. Furthermore, viscous damping may be used to reduce edge deformations in asymmetric-plan systems to levels equal to or smaller than those in the corresponding symmetric-plan system. © 1998 John Wiley & Sons, Ltd.  相似文献   
83.
谢涛  罗强  张良  连继峰  于曰明 《岩土力学》2018,39(5):1682-1690
极限状态下墙体侧向位移对土压力计算和支挡结构设计影响显著。根据Rankine变形体和Coulomb刚塑体模型,将墙后土体变形分别当作单剪和直剪试验中试样的剪切过程,以达到极限剪切变形(剪应变或单位长度剪切位移)作为进入主被动状态标准,构建了土体变形与墙体位移的几何关系,提出了反映土体变形与强度特性,同时考虑静止时初始应力状态影响的墙体极限侧向位移近似计算模型。分析表明:土体极限剪切变形、滑移区范围、初始应力状态是影响墙体极限位移的核心要素,其中极限剪切变形占据主导作用,是导致不同颗粒组成及密实程度土体进入极限状态所需墙体位移差异显著的主要原因,而主被动区范围不同和因静止土压力系数 1引起的初始剪切变形,则是被动状态墙体位移远大于主动的关键因素;算例中主动与被动状态下墙体位移与墙高之比分别介于0.5‰~13.2‰和?0.4%~?5.2%,且主动状态下细粒土墙体位移大于粗粒土,计算结果与工程经验及相关文献模型试验基本一致。  相似文献   
84.
针对无黏性土体,采用模型试验的方法,研究平移模式下刚性挡土墙后被动破坏滑裂面的空间形态。自主设计一种模型试验装置,重复开展6次试验,通过记录挡土墙后土体中预埋脆性玻璃条断裂的空间坐标,复原土体发生滑动的位置,绘制出挡土墙后滑裂面的三维形态图。试验结果表明:挡土墙后滑裂面具有明显的三维效应;挡土墙宽度内滑裂面纵向高度呈先缓慢增高后近似直线增高的曲面,初始破裂角度为9°,平均破裂角为26°,朗肯土压力理论的破裂角为28°;最大纵向破裂面长度为1.8倍挡土墙高度,与经典土压力理论的平面假定基本一致;滑裂面均有一定的横向扩展,主平面投影以初始扩散角约45°的斜线往外扩展,距离挡土墙最远处是宽度为0.7倍挡土墙宽度的水平线,斜线与水平线之间以半径为挡土墙宽度的圆弧过渡连接。研究结果为分析土体被动破坏的滑裂面空间形态提供了试验依据。  相似文献   
85.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   
86.
A new passive seismic response control device has been developed, fabricated, and tested by the authors and shown to be capable of producing negative stiffness via a purely mechanical mechanism, thus representing a new generation of seismic protection devices. Although the concept of negative stiffness may appear to be a reversal on the desired relationship between the force and displacement in structures (the desired relationship being that the product of restoring force and displacement is nonnegative), when implemented in parallel with a structure having positive stiffness, the combined system appears to have substantially reduced stiffness while remaining stable. Thus, there is an ‘apparent weakening and softening’ of the structure that results in reduced forces and increased displacements (where the weakening and softening is of a non‐damaging nature in that it occurs in a seismic protection device rather than within the structural framing system). Any excessive displacement response can then be limited by incorporating a damping device in parallel with the negative stiffness device. The combination of negative stiffness and passive damping provides a large degree of control over the expected performance of the structure. In this paper, a numerical study is presented on the performance of a seismically isolated highway bridge model that is subjected to various strong earthquake ground motions. The Negative Stiffness Devices (NSDs) are described along with their hysteretic behavior as obtained from a series of cyclic tests wherein the tests were conducted using a modified design of the NSDs (modified for testing within the bridge model). Using the results from the cyclic tests, numerical simulations of the seismic response of the isolated bridge model were conducted for various configurations (with/without negative stiffness devices and/or viscous dampers). The results demonstrate that the addition of negative stiffness devices reduces the base shear substantially, while the deck displacement is limited to acceptable values. This assessment was conducted as part of a NEES (Network for Earthquake Engineering Simulation) project which included shaking table tests of a quarter‐scale highway bridge model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
87.
上官士青  杨敏  李卫超 《岩土力学》2015,36(10):2934-2938
被动桩是指一种由于土体水平位移而发生挠曲变形的桩。目前不论是室内试验还是数值计算,常在模型边界对土体施加水平位移荷载(位移边界条件)形成土体的位移场,用来研究被动桩的变形特征,但不同研究者采用的水平位移施加位置(边界位置)与被动桩的距离存在较大差异。结合一个工程案例,采用有限单元法对水平位移加载位置进行了单变量参数分析。研究表明,随着水平位移加载位置与被动桩距离的增加,桩身变形显著减小。这表明了施加位移边界后地基中存在明显的应力扩散。当该距离小于5.5倍桩径时,在模型边界施加同等大小的水平位移所需应力显著增加。同时讨论了水平荷载加载位置与被动桩距离的合理范围,认为应在5~8倍桩径范围之内。  相似文献   
88.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
89.
The Serra do Mar escarpment, located along the southeastern coast of Brazil, is a high‐elevation passive margin escarpment. This escarpment evolved from the denudation of granites, migmatites and gneisses. The granites outcrop in the form of a ridge along the escarpment crest, due to its differential erosion (‘sugarloaf’ hills) from the surrounding lithologies. Several studies suggest that the passive margin escarpments are actively retreating toward the interior of the continent. However, no prior study has calculated the long‐term denudation rates of Serra do Mar to test this hypothesis. In this study, we measured the in situ‐produced 10Be concentration in fluvial sediments to quantify the catchment‐wide long‐term denudation rates of the Serra do Mar escarpment in southern Brazil. We sampled the fluvial sediments from ten watersheds that drain both sides of the escarpment. The average long‐term denudation rate of the oceanic side is between 2.1‐ and 2.6‐fold higher than the rate of the continental side: 26.04 ± 1.88 mm ka‐1 (integrating over between 15.8 ka‐1 and 46.6 ka‐1) and 11.10 ± 0.37 mm ka‐1 (integrating over between 52.9 ka‐1 and 85.4 ka‐1), respectively. These rates indicate that the coastal base level is controlling the escarpment retreat toward the continental high lands, which is consistent with observations made at other high‐elevation passive margins around the globe. The results also demonstrate the differential erosion along the Serra do Mar escarpment in southern Brazil during the Quaternary, where drainages over granites had lower average denudation rates in comparison with those over migmatites and gneisses. Moreover, the results demonstrate that the ocean‐facing catchments have been eroded more intensely than those facing the continent. The results also reveal that drainage over the granites decreases the average denudation rates of the ocean‐facing catchments and the ‘sugarloaf’ hills therefore are natural barriers that slowly retreat once they are exhumed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
90.
落石冲击作用下被动柔性防护网整体结构试验   总被引:4,自引:0,他引:4  
针对被动柔性防护网受力系统,介绍了被动柔性防护网在国内外的应用和研究现状,阐明了被动柔性防护网的构成和传力机理,揭示其抵抗落石冲击的基本原理。为分析被动柔性防护网整体受力机理和响应特点,进行了在落石作用下被动柔性防护网足尺模型的冲击试验,分析了被动柔性防护网受到冲击之后的整体变形以及减压环、钢柱等关键构件的耗能及其破坏机理,为被动柔性防护网的结构计算分析与设计提供一定的参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号