首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1595篇
  免费   159篇
  国内免费   232篇
测绘学   51篇
大气科学   124篇
地球物理   228篇
地质学   280篇
海洋学   427篇
天文学   7篇
综合类   92篇
自然地理   777篇
  2024年   12篇
  2023年   21篇
  2022年   69篇
  2021年   103篇
  2020年   72篇
  2019年   84篇
  2018年   67篇
  2017年   61篇
  2016年   85篇
  2015年   78篇
  2014年   100篇
  2013年   79篇
  2012年   77篇
  2011年   93篇
  2010年   76篇
  2009年   105篇
  2008年   73篇
  2007年   88篇
  2006年   101篇
  2005年   119篇
  2004年   58篇
  2003年   73篇
  2002年   42篇
  2001年   54篇
  2000年   59篇
  1999年   31篇
  1998年   18篇
  1997年   26篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   10篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
排序方式: 共有1986条查询结果,搜索用时 62 毫秒
951.
Using daily discharge data from the USGS, we analyzed how hydrologic regimes vary with land use in four large hydrologic regions that span a gradient of natural land cover and precipitation across the continental United States. In each region we identified small streams (contributing area < 282 km2) that have continuous daily streamflow data. Using a national database, we characterized the composition of land cover of the watersheds in terms of aggregate measures of agriculture, urbanization, and least disturbed (“natural”). We calculated hydrologic alteration using 10 ecologically-relevant hydrologic metrics that describe magnitude, frequency, and duration of flow for 158 watersheds within the Southeast (SE), Central (CE), Pacific Northwest (NW), and Southwest (SW) hydrologic regions of the United States. Within each watershed, we calculated percent cover for agriculture, urbanized land, and least disturbed land to elucidate how components of the natural flow regime inherent to a hydrologic region is modified by different types and proportions of land cover. We also evaluated how dams in these regions altered the hydrologic regimes of the 43 streams that have pre- and post-dam daily streamflow data. In an analysis of flow alteration along gradients of increasing proportion of the three land cover types, we found many regional differences in hydrologic responses. In response to increasing urban land cover, peak flows increased (SE and CE), minimum flows increased (CE) or decreased (NW), duration of near-bankfull flows declined (SE, NW) and flow variability increased (SE, CE, and NW). Responses to increasing agricultural land cover were less pronounced, as minimum flows decreased (CE), near-bankfull flow durations increased (SE and SW), and flow variability declined (CE). In a second analysis, for three of the regions, we compared the difference between least disturbed watersheds and those having either > 15% urban and > 25% agricultural land cover. Relative to natural land cover in each region, urbanization either increased (SE and NW) or decreased (SW) peak flows, decreased minimum flows (SE, NW, and SW), decreased durations of near-bankfull flows (SE, NW, and SW), and increased flow variability (SE, NW, and SW). Agriculture had similar effects except in the SE, where near-bankfull flow durations increased. Overall, urbanization appeared to induce greater hydrologic responses than similar proportions of agricultural land cover in watersheds. Finally, the effects of dams on hydrologic variation were largely consistent across regions, with a decrease in peak flows, an increase in minimum flows, an increase in near-bankfull flow durations, and a decrease in flow variability. We use this analysis to evaluate the relative degree to which land use has altered flow regimes across regions in the US with naturally varying climate and natural land cover, and we discuss the geomorphic and ecological implications of such flow modification. We end with a consideration of what elements will ultimately be required to conduct a more comprehensive national assessment of the hydrologic responses of streams to land cover types and dams. These include improved tools for modeling hydrologic metrics in ungauged watersheds, incorporation of high-resolution geospatial data to map geomorphic and hydrologic drivers of stream response to different types of land cover, and analysis of scale dependence in the distribution of land-use impacts, including mixed land uses. Finally, ecological and geomorphic responses to human alteration of land cover will have to be calibrated to the regional hydroclimatological, geologic, and historical context in which the streams occur, in order to determine the degree to which stream responses are region-specific versus geographically independent and broadly transferable.  相似文献   
952.
We analysed vegetation data recorded in the degraded lowland grasslands in Otindag Sandland during the first 4-years of restoration (2001–2004) to investigate: (1) the contribution of individual plant functional type (PFT) to PFT diversity of community and (2) the relationships between primary productivity and biodiversity both at species and PFT levels. Sixteen PFTs were distinguished based on the following traits: (1) life-span (annual vs. perennial); (2) photosynthetic pathway (C3 vs. C4); (3) reproductive mode (clonal vs. non-clonal); and (4) growth form (grass vs. forb). Analysis of data indicates that density, coverage, number of species, phytomass, and relative importance of PFTs depended strongly on life-span, photosynthetic pathway, reproductive mode and growth form. Phytomass was significantly correlated with PFT diversity, but not species diversity. However, the relationship between phytomass and PFT diversity varied greatly with year, with a positive relationship in 2001 and 2004 and a negative one in 2002 and 2003. As the restoration proceeds, the perennial C3 clonal grass became the greatest contributor to PFT diversity.  相似文献   
953.
不同林草系统对集水区水量平衡的影响研究   总被引:13,自引:0,他引:13       下载免费PDF全文
应用SWAT99.2模型(Soil and Water Assessment Tool),系统地研究了红壤丘岗集水区4种林草系统(自然草被、阔叶林、混交林和针叶林)的地表径流、根层渗漏、蒸发蒸腾、土壤蓄水量的时空特点,并用实测的地表径流对模型进行校正和验证,月地表径流的Nash-Sutcliffe模拟效率系数达到0.74,模拟值和观测值的决定系数达0.90。结果表明,降水的年内分配不均造成了径流、渗漏、土壤蓄水量月份之间的差异,年际间气象条件(特别是降水)的差异性导致了水量平衡支出项的年际差异,其中径流量和渗漏量受降水的影响最大,蒸发蒸腾量次之,土壤蓄水量的年变化量受降水的影响最小;林地能有效地减少区域的地表径流量,其中以阔叶林和混交林的效果最好;林地入渗性能大于草地;蒸发蒸腾量是林地水量平衡支出中最大的一项,且3种林地的蒸发蒸腾量均大于草地。水量平衡的预测结果显示,土地利用方式是区域短期水量平衡的主要影响因子。  相似文献   
954.
以2000-03到2001-02的辐射观测资料,分析了海北高寒草甸生态系统定位站地区辐射及各分光辐射的变化特征,将为高寒草甸生态系统的物质循环、能量流动、草地生产力形成机制等问题的研究提供科学依据。结果表明:海北站区Eg、Er、UV、PAR、NIR和En具有明显的日、年变化,年内其总量分别达6 278.867 M J/m2、1 515.139 M J/m2、311.242 M J/m2、2 576.777 M J/m2、3 397.404 M J/m2和2 542.950 M J/m2,其中在植物生长期的5~9月分别为3 181.215 M J/m2、698.021 M J/m2、165.955 M J/m2、1 133.965 M J/m2、1 673.871 M J/m2和1 668.805M J/m2。年内Er、UV、PAR、NIR和En占Eg的比例分别为0.242、0.048、0.410、0.540和0.410,在植物生长期分别为0.219、0.052、0.413、0.528和0.527。对Eg和PAR提出了下列形式的模拟求算式:Eg=Eg0(0.0897 0.9768S/S0)和PAR=-3.804 4 0.417 7Eg,模拟效果较好,可利用有关常规气象观测资料进行估算。  相似文献   
955.
厦门湿地生态系统服务功能价值评估   总被引:43,自引:8,他引:43  
陈鹏 《湿地科学》2006,4(2):101-107
厦门湿地具有多种重要的生态系统服务功能,对其服务功能进行评估是湿地保护与合理开发的基础,也是确保湿地资源的可持续性利用的基础。依据2003年Landsat TM遥感影像解译数据,将厦门市湿地生态系统类型划分为浅海水域、滩涂、河口水域、河流、水库、红树林、滩涂、沙滩、盐田等9个类型,着重针对湿地提供的栖息地、湿地产品、涵养水源、污染净化、抵御海洋灾害、旅游以及文化科研等7种服务功能,采用生态经济学的理论和方法来评估各项生态系统服务功能价值。结果表明:厦门湿地的服务功能总价值为135.54亿元/a,其中湿地的污染净化功能的价值量最大,为66.46亿元/a,其次旅游休闲的功能价值为33.14亿元/a。  相似文献   
956.
For thousands of years, people have been trying to promote benefit and abolish harm to the Yellow River by means of various activities such as flood control and water abstraction. However, after the last decade of the 20th century, it was noticed that the…  相似文献   
957.
王玲  刘海隆 《水文》2007,27(3):71-74,38
本文以重庆岩溶区为研究对象,从水文水资源方面分析了气候变化对岩溶生态系统的影响。结合水文数据与气象数据,运用数学分析的方法主要研究了气温和降水对水文水资源要素的影响。从研究中可知道,岩溶区降水变化对径流量影响显著,呈显著正相关,并且年均降水量与年均径流量存在指数增长关系。同时由于降水的变化,导致重庆岩溶区干旱、洪涝和正常年交替出现,且旱涝持续时间长。气温是影响蒸发的重要因子,可能蒸散量随着气温的变化呈现出明显的季节变化和年际变化,气温升高,则蒸发量增加,反之则减少。从空间上,可能蒸散量大体上西部大于东部,北部大于南部。  相似文献   
958.
959.
In the context of CO2 surface exchange estimation, an analysis combining the basic principles of diffusion and scalar conservation shows that the mixing ratio is the appropriate variable both for defining the (eddy covariance) turbulent flux and also for expressing the relationship between the turbulent flux and surface exchange in boundary-layer budget equations. Other scalar intensity variables sometimes chosen, both the CO2 density and molar fraction, are susceptible to the influence of surface exchange of heat and water vapour. The application of a hypsometric analysis to the boundary-layer “control volume” below the tower measurement height reveals flaws in previously applied approaches: (a) incompressibility cannot be assumed to simplify mass conservation (the budget in terms of CO2 density); (b) compressibility alone makes the analysis of mass conservation vulnerable to uncertainties associated with resultant non-zero vertical velocities too small to measure or model over real terrain; and (c) the WPL (Webb et al. (1980) Quart J Roy Meteorol Soc 106:85–100) “zero dry air flux” assumption is invalidated except at the surface boundary. Nevertheless, the definition and removal of the WPL terms do not hinge upon this last assumption, and so the turbulent CO2 flux can be accurately determined by eddy covariance using gas analysers of either open- or closed-path design. An appendix discusses the necessary assumptions and appropriate interpretations for deriving the WPL terms.  相似文献   
960.
In this study, the diurnal and seasonal variations of CO2 fluxes in a subtropical mixed evergreen forest in Ningxiang of Hunan Province, part of the East Asian monsoon region, were quantified for the first time. The fluxes were based on eddy covariance measurements from a newly initiated flux tower. The relationship between the CO2 fluxes and climate factors was also analyzed. The results showed that the target ecosystem appeared to be a clear carbon sink in 2013, with integrated net ecosystem CO2exchange(NEE), ecosystem respiration(RE), and gross ecosystem productivity(GEP) of-428.8, 1534.8 and1963.6 g C m-2yr-1, respectively. The net carbon uptake(i.e. the-NEE), RE and GEP showed obvious seasonal variability,and were lower in winter and under drought conditions and higher in the growing season. The minimum NEE occurred on12 June(-7.4 g C m-2d-1), due mainly to strong radiation, adequate moisture, and moderate temperature; while a very low net CO2 uptake occurred in August(9 g C m-2month-1), attributable to extreme summer drought. In addition, the NEE and GEP showed obvious diurnal variability that changed with the seasons. In winter, solar radiation and temperature were the main controlling factors for GEP, while the soil water content and vapor pressure deficit were the controlling factors in summer. Furthermore, the daytime NEE was mainly limited by the water-stress effect under dry and warm atmospheric conditions, rather than by the direct temperature-stress effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号