首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10559篇
  免费   2463篇
  国内免费   921篇
测绘学   605篇
大气科学   465篇
地球物理   4826篇
地质学   3618篇
海洋学   1093篇
天文学   2061篇
综合类   288篇
自然地理   987篇
  2024年   14篇
  2023年   45篇
  2022年   111篇
  2021年   201篇
  2020年   239篇
  2019年   429篇
  2018年   601篇
  2017年   636篇
  2016年   676篇
  2015年   631篇
  2014年   676篇
  2013年   1028篇
  2012年   671篇
  2011年   651篇
  2010年   568篇
  2009年   658篇
  2008年   746篇
  2007年   676篇
  2006年   683篇
  2005年   586篇
  2004年   495篇
  2003年   492篇
  2002年   418篇
  2001年   351篇
  2000年   402篇
  1999年   307篇
  1998年   236篇
  1997年   140篇
  1996年   106篇
  1995年   94篇
  1994年   75篇
  1993年   63篇
  1992年   37篇
  1991年   41篇
  1990年   36篇
  1989年   24篇
  1988年   15篇
  1987年   22篇
  1986年   13篇
  1985年   11篇
  1984年   8篇
  1983年   4篇
  1982年   9篇
  1981年   7篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
81.
82.
In view of rapid developments in iterative solvers, it is timely to re‐examine the merits of using mixed formulation for incompressible problems. This paper presents extensive numerical studies to compare the accuracy of undrained solutions resulting from the standard displacement formulation with a penalty term and the two‐field mixed formulation. The standard displacement and two‐field mixed formulations are solved using both direct and iterative approaches to assess if it is cost‐effective to achieve more accurate solutions. Numerical studies of a simple footing problem show that the mixed formulation is able to solve the incompressible problem ‘exactly’, does not create pressure and stress instabilities, and obviate the need for an ad hoc penalty number. In addition, for large‐scale problems where it is not possible to perform direct solutions entirely within available random access memory, it turns out that the larger system of equations from mixed formulation also can be solved much more efficiently than the smaller system of equations arising from standard formulation by using the symmetric quasi‐minimal residual (SQMR) method with the generalized Jacobi (GJ) preconditioner. Iterative solution by SQMR with GJ preconditioning also is more elegant, faster, and more accurate than the popular Uzawa method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
83.
84.
D. Luz  F. Hourdin  S. Lebonnois 《Icarus》2003,166(2):343-358
We present a 2D general circulation model of Titan's atmosphere, coupling axisymmetric dynamics with haze microphysics, a simplified photochemistry and eddy mixing. We develop a parameterization of latitudinal eddy mixing by barotropic waves based on a shallow-water, longitude-latitude model. The parameterization acts locally and in real time both on passive tracers and momentum. The mixing coefficient varies exponentially with a measure of the barotropic instability of the mean zonal flow. The coupled GCM approximately reproduces the Voyager temperature measurements and the latitudinal contrasts in the distributions of HCN and C2H2, as well as the main features of the zonal wind retrieved from the 1989 stellar occultation. Wind velocities are consistent with the observed reversal time of the North-South albedo asymmetry of 5 terrestrial years. Model results support the hypothesis of a non-uniform distribution of infrared opacity as the cause of the Voyager temperature asymmetry. Transport by the mean meridional circulation, combined with polar vortex isolation may be at the origin of the latitudinal contrasts of trace species, with eddy mixing remaining restricted to low latitudes most of the Titan year. We interpret the contrasts as a signature of non-axisymmetric motions.  相似文献   
85.
This paper is a continuation of previous research, which obtained a convenient solution for arbitrary surface fluxes before ponding. By means of Fourier Transformation this has been extended to derive analytical solutions of a linearized Richards' equation for arbitrary input fluxes after surface saturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
86.
The oxygen isotope records of both benthic and planktonic Foraminifera in five piston cores, collected from the region between the Oyashio and Kuroshio Currents near Japan, clearly show the marked latitudinal shifts of these two currents during the past 25 kyr. Under the present hydrographic condition, a clear relationship between the sea‐surface temperature (SST) and oxygen isotope differences from benthic to planktonic Foraminifera is observed in this region. Using this relationship, we find decreased SSTs of 12–13°C (maximum 15°C) in the southernmost core site at the Last Glacial Maximum (LGM), indicating the Oyashio Current shifted southward. The SSTs at the southern two core sites abruptly increased more than 10°C at 10–11 ka, suggesting the Kuroshio Current shifted northward over these sites at 10–11 ka. In contrast, the northern two core sites have remained under the influence of the cold Oyashio Current for the past 25 kyr. With the reasonable estimate of bottom‐water temperature decrease of 2.5°C at the LGM, the SSTs estimated by this new method give exactly the same SST values calculated from Mg/Ca ratio of planktonic Foraminifera, allowing palaeosea‐surface salinities to be reconstructed. The result suggests that the ice volume effect was 1.0 ± 0.1‰ at the LGM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
87.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
88.
89.
90.
Stable oxygen isotope analysis and measurement of several dissolved cations and anions of bulk meltwater samples have provided information about the hydrochemical environment of the glacial hydrological system at Imersuaq Glacier, an outlet tongue from the Greenland ice‐sheet, West Greenland. The samples were collected at frequent intervals during the period 20–28 July 2000 in a small (<20 L s?1) englacial meltwater outlet at the glacier margin. The results document the following findings: (i) a marked diurnal variation of δ18O is related to the composition of oxygen isotope provenances, mainly near‐marginal local superimposed ice and basal up‐sheared ice further up‐glacier; (ii) a relationship is seen between all base cations (Na+, K+, Ca2+, Mg2+), SO42? and δ18O, indicating that solute acquisition is provided by solid–solution contact with the up‐sheared ice—as the relationship with Cl? is weak the influence of seasalt‐derived solutes is small in the area; (iii) when the melt rate is high, two diurnal maxima of δ18O values and solute concentrations are measured, and it is suggested that a snow meltwater component is responsible for the second maximum of δ18O—a short residence time leads to a delayed decrease in ion concentrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号