首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1477篇
  免费   141篇
  国内免费   298篇
测绘学   25篇
大气科学   107篇
地球物理   388篇
地质学   477篇
海洋学   565篇
天文学   4篇
综合类   87篇
自然地理   263篇
  2024年   15篇
  2023年   48篇
  2022年   63篇
  2021年   67篇
  2020年   64篇
  2019年   99篇
  2018年   50篇
  2017年   52篇
  2016年   56篇
  2015年   59篇
  2014年   88篇
  2013年   107篇
  2012年   74篇
  2011年   80篇
  2010年   85篇
  2009年   93篇
  2008年   80篇
  2007年   72篇
  2006年   91篇
  2005年   75篇
  2004年   76篇
  2003年   55篇
  2002年   68篇
  2001年   39篇
  2000年   30篇
  1999年   31篇
  1998年   26篇
  1997年   27篇
  1996年   29篇
  1995年   11篇
  1994年   8篇
  1993年   16篇
  1992年   9篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   15篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1981年   5篇
  1978年   1篇
排序方式: 共有1916条查询结果,搜索用时 0 毫秒
61.
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local‐scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross‐scale processes affect nitrogen attenuation on the landscape. The model‐fitted coefficient values are logically consistent with the hypothesis that broad‐scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local‐scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   
62.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   
63.
64.
大兴安岭多年冻土泥炭地是对全球变暖响应敏感的地区之一。在全球变暖、多年冻土退化背景下,为了探明秋季冻融对多年冻土泥炭地无机氮时空变化的影响,本研究于2019年9—11月以大兴安岭三种多年冻土泥炭地为研究对象进行野外原位实验,分析了秋季冻融前、中和后期多年冻土泥炭地浅层和深层土壤无机氮的时空变化特征以及浅层和深层土壤含水量和温度的变化规律,建立了土壤无机氮含量与土壤温度和含水量间的多元线性回归模型。研究表明:多年冻土小叶章泥炭地(XY)、兴安落叶松-泥炭藓泥炭地(XA)和白毛羊胡子苔草泥炭地(BM)的土壤铵态氮(NH_(4)^(+)-N)含量变化范围:(1.00±0.00)~(20.60±0.20)mg·kg^(-1),硝态氮(NO_(3)^(-)-N)含量的变化范围:(0.02±0.01)~(14.64±1.11)mg·kg^(-1),且无机氮以土壤NH_(4)^(+)-N为主;秋季冻融后期无机氮含量明显高于前期。尽管水热交互作用对该时期无机氮没有显著影响,但是在不同冻融阶段,无机氮对环境因子的响应程度存在差异:在秋季冻融前、中和后期浅层无机氮动态分别与浅层温度和含水量的变化相关,但在整个秋季冻融期间BM浅层无机氮含量仅对10~20 cm含水量存在响应(R^(2)=0.344,P<0.01)。研究表明,秋季冻融期内,多年冻土泥炭地无机氮发生初步累积,且浅层环境因子对无机氮响应程度最大。本研究可补充大兴安岭多年冻土泥炭地秋季冻融对土壤无机氮影响研究的相关数据,并为多年冻土泥炭地响应全球变暖的温室气体释放的研究提供基础数据支撑。  相似文献   
65.
无灌溉人工固沙区土壤有机碳及氮含量变异的初步结论   总被引:2,自引:5,他引:2  
对降水量小于200mm的沙坡头无灌溉条件下人工植被固沙区土壤有机碳和全氮含量变异进行研究。结果表明, 流沙在固定过程中, 人工植被固沙体系的营建改善了成土环境, 促进了生物地球化学循环, 使土壤碳、氮的含量和分布规律发生了变化: ①固沙区土壤有机碳和全氮含量及C/N均高于流沙区, 随土层深度增加土壤有机碳和全氮含量呈逐渐降低趋势, 而C/N呈逐渐升高趋势; ②不同年限固沙区间土壤有机碳、全氮含量及C/N变异小于土层垂直方向的变异; ③不同年限固沙区土层垂直方向土壤有机碳和全氮含量及C/N变异较大, 变异主要存在于结皮层及其下土层(0~5cm); ④流沙区土壤碳、氮含量及C/N低于固沙区, 而且在土层垂直方向上基本无变异。  相似文献   
66.
67.
Photoelectric detectors for the measurement of photolysis frequencies of different trace gases in the atmosphere are described. They exhibit uniform response characteristics over one hemisphere (2 sr) and wavelength characteristics closely matched to those of the photolysis frequencies J O1D, J NO2, and J NO3, respectively. Absolute calibration of the J O1D detector was performed by chemical actinometry with an accuracy of ±16 percent. Simultaneous measurements of J NO2 and J O1D are presented.  相似文献   
68.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   
69.
The column amounts of nitrogen dioxide (NO2) and ozone (O3) were measured using a visible spectrometer based on the twilight zenith-sky technique at two observatories located at similar latitudes in the northern part of Japan separated by a distance of 150 km. The measurements began in April 1991 at the Moshiri Observatory (44.4°N, 142.3°E) and in April 1994 at the Rikubetsu Observatory (43.5°N, 143.8°E). Since weather conditions and the possible influence from tropospheric pollution were not always identical at these two observatories, the overall accuracy of the measurements was studied comparing these data sets. The first year data obtained at a solar zenith angle of 90 degrees indicated that the NO2 slant column values at sunrise and sunset agreed within 0.36 and 0.54 × 1016 cm-2, respectively, corresponding to 5 % (June) and to 12 % (December) of the columns. The O3 values agreed within 0.76 × 1019 cm-2, corresponding to 4 % (March) 6 % (August) of the columns, although a part of the difference was systematic. The O3 column amounts were also compared to those obtained by the Dobson spectrometer at Sapporo (43.5°N, 143.8°E), whose latitude is similar to these observatories. When an air mass factor of 17.5 was used, the two-year Moshiri vertical column values agreed with the Dobson direct sun values to within 15 Dobson Units, or 3 6 % of the column. The difference between the two values was found to be due partly to the change in the air mass factor caused by seasonal and day-to-day changes in the shape of the O3 vertical profiles. These results confirm the reliability of the NO2 and O3 measurements by visible spectrometers at these sites for the Network for the Detection of Stratospheric Change (NDSC).  相似文献   
70.
The release of excessive anthropogenic nitrogen contributes to global climate change, biodiversity loss, and the degradation of ecosystem services. Despite being an urgent global problem, the excess nitrogen is not governed globally. This paper considers possible governance options for dealing with excessive nitrogen through target setting, which is an approach commonly adopted to address global environmental problems. The articulation of the nitrogen problem and the numerous international institutions dealing with it, provide evidence of a nitrogen regime characterised by limited coordination and targets covering sources and impacts only partially. This calls for improving the nitrogen governance in the direction of more integrated approaches at the global scale. In this vein, the paper investigates two opposite governance options – here labelled as ‘holistic’ and ‘origin-based’ – and evaluates them for their capability to define solutions and targets for human-induced nitrogen. From the analysis, it emerges that origin-based solutions can be preferable to holistic solutions as they can be more specific and potentially have greater immediate results. Independent from which governance arrangement is chosen, what matters most is the speed at which an arrangement can deploy solutions to combat (fast-growing) nitrogen pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号