首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   30篇
  国内免费   2篇
地球物理   102篇
地质学   4篇
综合类   1篇
自然地理   1篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   13篇
  2019年   7篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   12篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
  1992年   1篇
  1979年   1篇
排序方式: 共有108条查询结果,搜索用时 109 毫秒
71.
Spatial distribution of near-fault ground motion   总被引:2,自引:0,他引:2  
Introduction In order to explain severe damage of structures and ground surface near earthquake fault, many theoretical and numerical methods have been developed to study strong ground motion near the fault (Somerville, 1998) via the kinematic and dynamic source models. Moreover, a great number of valuable strong ground motion records, especially near the fault, have been acquired in recent years. These valuable records provide useful data for improving simulation approaches. Based on those r…  相似文献   
72.
李琦  李瑞 《地震工程学报》2018,40(2):246-251
传统基于碰撞回弹系数Stereo-mechanical方法在分析建筑地桩基础的沉降位移过程中未考虑地桩基础碰撞的能量损耗,造成分析结果存在准确性和可信度较低的问题。因此提出改进的Kelvin建筑地桩基础碰撞沉降分析方法,以解决基于碰撞回弹系数Stereo-mechanical法存在的问题。采用线性阻尼构建Kelvin模型,分析地桩基础碰撞靠近阶段和回弹阶段的阻尼做功,构建地桩基础碰撞转换单自由度体系振动模型,实现对地桩基础的相对沉降速度和相对沉降位移的有效运算,基于建筑地桩基础碰撞沉降发生初始和结束时刻的能量和动量守恒定理,得到建筑地桩基础的最大沉降位移,实现对建筑地桩基础沉降的有效分析。实验结果说明,所提方法能提高地桩基础沉降分析的准确性和可信度。  相似文献   
73.
The increasing number of wind turbines in active tectonic regions has attracted scientific interest to evaluate the seismic vulnerability of offshore wind turbines (OWTs). This study aims at assessing the deformation and collapse susceptibility of 2MW and 5MW OWTs subjected to shallow-crustal pulse-like ground motions, which has not been particularly addressed to date. A cloud-based fragility assessment is performed to quantify the seismic response for a given intensity measure and to assess the failure probabilities for pulse-like and non-pulse-like ground motions. The first-mode spectral acceleration Sa(T1) is found to be an efficient response predictor for OWTs, exhibiting prominent higher-mode behavior, at the serviceability and ultimate conditions. Regardless of earthquake type, it is shown that records with strong vertical components may induce nonlinearity in the supporting tower, leading to potential failure by buckling in three different patterns: (i) at tower base near platform level, (ii) close to tower top, and (iii) between the upper half of the main tower and its top. Type and extent of the damage are related to the coupled excitation of vertical and lateral higher modes, for which tower top acceleration response spectra Sa,i(Top) is an effective identifier. It is also observed that tower's slenderness ratio (l/d), the diameter-to-thickness ratio (d/t), and the rotor-nacelle-assembly mass (mRNA) are precursors for evaluating the damage mode and vulnerability of OWTs under both pulse-like and non-pulse-like ground motion records.  相似文献   
74.
This article presents a simple and effective method for generating across-fault seismic ground motions for the analysis of ordinary and seismically isolated bridges crossing strike-slip faults. Based on pulse models available in the literature, two simple loading functions are first proposed to represent the coherent (long-period) components of ground motion across strike-slip faults. The loading functions are then calibrated using actual near-fault ground-motion records with a forward-directivity velocity pulse in the fault-normal direction and a fling-step displacement in the fault-parallel direction. The effectiveness of the proposed method is demonstrated by comparing time history responses and seismic demands of ordinary and seismically isolated bridges obtained from nonlinear response history analyses using the actual ground-motion records and the calibrated loading functions. A comprehensive methodology is also presented for selecting the input parameters of the loading functions based on empirical equations and practical guidelines. Finally, an analysis procedure for bridge structures crossing strike-slip faults is introduced based on the proposed method for generating across-fault ground motions and the parameter selection methodology for the loading functions.  相似文献   
75.
Near-fault ground motions containing high energy and large amplitude velocity pulses may cause severe damage to structures. The most widely used intensity measure (IM) is the elastic spectral acceleration at the fundamental period of the structure (Sa(T1)); however, Sa(T1) is not a sufficient IM with respect to the effects of the pulse-like ground motions on structural response. For near-fault ground motions, including pulse-like and non–pulse-like time histories, we propose a vector-valued IM consisting of a new IM called instantaneous power (IP(T1)) and the Sa(T1). The IP(T1) is defined as the maximum power of the bandpass-filtered velocity time series over a time interval of 0.5T1. The IP(T1) is period-dependent because the velocity time series is filtered over a period range (0.2T1-3T1). This allows the IP(T1) to represent the power of the near-fault ground motions relevant to the response of the structure. Using two-dimensional models of the 2- and 9-story steel-frame buildings, we show that the proposed [Sa(T1), IP(T1)] vector IM gives more accurate estimates of the maximum inter-story drift and collapse capacity responses from near-fault ground motions than using the vector IM consisting of the Sa(T1), the presence of the velocity pulse, and the period of the velocity pulse. Moreover, for the structures considered, for a given Sa(T1), the IP(T1) is more strongly correlated with structural damage from near-fault ground motions than the combination of the velocity pulse and pulse period.  相似文献   
76.
Tall rigid blocks are prevalent in ancient historical constructions. Such structures are prone to rocking behaviour under strong ground motion, which is recognizably challenging to predict and mitigate. Our study is motivated by the need to provide innovative nonintrusive solutions to attenuate the rocking response of historical buildings and monuments. In this paper, we examine a novel scheme that employs external resonators buried next to the rocking structure as a means to control its seismic response. The strategy capitalizes on the vibration absorbing potential of the structure-soil-resonator interaction. Furthermore, the benefits of combining the resonators with inerters in order to reduce their gravitational mass without hampering their motion-control capabilities are also explored. Advanced numerical analyses of discrete models under coherent acceleration pulses with rocking bodies of different slenderness ratios under various ground motion intensities highlight the significant vibration absorbing qualities of the external resonating system. The influence of key system parameters such as the mass, stiffness, and damping of the resonator and those of the soil-structure-resonator arrangement are studied. Finally, a case study on the evaluation of the response of rocking structures with external resonators under real pulse-like ground-motion records confirms the important reductions in peak seismic rotational demands obtained with the proposed arrangement.  相似文献   
77.
在近断层地震动下桥梁结构将发生较大反应,减隔震设计是减轻地震损伤的重要手段。提出了在桥梁双柱墩横桥向设置防屈曲支撑(BRB),在纵桥向设置铅芯橡胶支座(LRB)的双向减隔震体系。利用Midas Civil软件建立3种不同减隔震方式的桥梁结构模型:LRB仅单向,LRB双向与LRB联合BRB,运用非线性时程分析方法计算了桥墩反应(墩顶侧移角、残余位移角和曲率延性)、LRB支座变形和BRB的耗能特性等。结果表明:在近断层地震动输入下联合设置LRB和BRB的双向减隔震桥梁减震效果明显,相比其它2种方式,能有效降低墩柱的塑性变形及起到保护桥墩的作用。在横桥向,桥墩最大侧移角、残余位移角和最大曲率延性系数都显著降低。  相似文献   
78.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   
79.
Capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio (CR ) spectrum and the corresponding damage index (DI ) spectrum are proposed in this study to aid seismic design and evaluation of reinforced concrete (RC) bridges. Nonlinear time history analyses of single-degree-of-freedom (SDOF) systems are conducted using a versatile smooth hysteretic model when subjected to far-field and near-fault ground motions. It is demonstrated that the Park and Ang damage index can be a good indicator for assessing the actual visible damage condition of columns regardless of its loading history, providing a better insight into the seismic performance of bridges. The computed spectra for near-fault (NF) ground motions show that as the magnitude of pulse period ranges increases from NF1 (0.5-2.5 seconds) to NF2 (2.5-5.5 seconds), the spectral ordinates of the CR and DI spectra increase moderately. In contrast, the computed spectra do not show much difference between NF2 and NF3 (5.5-10.5 seconds) when the period of vibration Tn≤  1.5 seconds, after which the spectral ordinates of NF3 tend to increase obviously, whereas those of NF2 decrease with increasing Tn . Moreover, when relative strength ratio R  = 5.0, nearly all of the practical design scenarios could not survive NF3. On the basis of the computed spectra, CR and DI formulae are presented as a function of Tn , R , and various design parameters for far-field and near-fault ground motions. Finally, an application of the proposed spectra to the performance-based seismic design of RC bridges is presented using DI as the performance objective.  相似文献   
80.
Rocking column-foundation system is a new design concept for bridges that can reduce overall seismic damage, minimize construction and repair time, and achieve lower cost in general. However, such system involves complex dynamic responses due to impacts and highly nonlinear rocking behavior. This study presents a dimensionless regression analysis to estimate the rocking and shaking responses of the flexible column-foundation system under near-fault ground motions. First, the transient drift and rocking responses of the system are solved numerically using previously established analytical models. Subsequently, the peak column drifts and uplift angles are derived as functions of ground motion characteristics and the geometric and dynamic parameters of column-foundation system in regressed dimensionless forms. The proposed response models are further examined by validating against the numerical simulations for several as-built bridge cases. It is shown that the proposed model not only physically quantifies the influences of prominent parameters, but also consistently reflects the complex dynamics of the system. The seismic demands of rocking column-foundation system can be realistically predicted directly from structural and ground motion characteristics. This can significantly benefit the design of bridges incorporating this new design concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号