首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  国内免费   3篇
地球物理   46篇
地质学   4篇
海洋学   5篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有55条查询结果,搜索用时 0 毫秒
51.
A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.  相似文献   
52.
This paper deals with the determination of critical earthquake load models for linear structures subjected to single‐point seismic inputs. The primary objective of this study is to examine the realism in critical excitations and critical responses vis a vis the framework adopted for the study and constraints that these excitations are taken to satisfy. Two alternative approaches are investigated. In the first approach, the critical earthquake is expressed in terms of a Fourier series that is modulated by an enveloping function that imparts transient nature to the inputs. The Fourier coefficients are taken to be deterministic and are constrained to satisfy specified upper and lower bounds. Estimates on these bounds, for a given site, are obtained by analysing past earthquake records from the same site or similar sites. The unknown Fourier coefficients are determined such that the response of a given structure is maximized subjected to these bounds and additional constraints on intensity, peak ground acceleration, peak ground velocity and peak ground displacement. In the second approach, the critical earthquake is modelled as a partially specified non‐stationary Gaussian random process which is defined in terms of a stationary random process of unknown power spectral density (psd) function modulated by a deterministic envelope function. The input is constrained to possess specified variance and average zero crossing rate. Additionally, a new constraint in terms of entropy rate representing the expected level of disorder in the excitation is also imposed. The unknown psd function of the stationary part of the input is determined so that the response of a given structure is maximized. The optimization problem in both these approaches is solved by using sequential quadratic programming method. The procedures developed are illustrated by considering the seismic response of a tall chimney and an earth dam. It is concluded that the imposition of lower and upper bounds on Fourier coefficients in the first approach and constraints on amount of disorder in the second approach are crucial in arriving at realistic critical excitations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
53.
This paper investigates the response of lead rubber bearings (LRBs) under bidirectional earthquake excitations when lead core heating effect is of concern. For this purpose, a series of nonlinear response history analyses were conducted with a bilinear force‐deformation relation for LRBs. In the considered bilinear representation, the strength of LRBs deteriorates because of lead core heating under cyclic motions. Response of LRBs was studied in terms of maximum isolator displacements (MIDs) and maximum lead core temperature as a function of isolator characteristics (characteristic strength to weight ratio, Q/W, and post‐yield isolation period, T). Nonlinear response history analyses were performed using two sets of ground motions clustered according to their soil classifications. To quantify the interacted effects of coupled analysis and lead core heating on MID, unidirectional analyses were also performed. Furthermore, the efficacy of equivalent lateral force procedure in estimating the MID of LRBs was also tested for the cases in which temperature‐dependent behavior of LRBs was considered. The results demonstrate that the temperature rises in the lead core of LRBs in bidirectional analyses are approximately 50% higher than that of unidirectional ones. It decreases with increasing Q/W ratio and T. It is also revealed that equivalent lateral force procedure gives close estimations for MID with some overestimation even for temperature‐dependent behavior of LRBs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
54.
The polarized single-crystal Raman spectrum of synthetic fayalite, Fe2SiO4, was recorded between 5 and 773 K in order to investigate its lattice dynamic behavior. A broad absorption envelope is observed at wavenumbers between 800 and 960 cm–1 and it contains two intense bands at 816 and 840 cm–1 at 293 K in the (cc) spectrum. The integral area of the envelope decreases upon cooling from 293 K and reaches a minimum around 55 K. It then increases again with a further decrease in temperature down to 5 K. It is proposed that the envelope in the (cc) spectra consists of seven different modes, some of which are symmetry-forbidden, that arise from combination scattering of nonsymmetric internal SiO4-stretching modes of Big symmetry (i = 1, 2, 3) and low-energy excitations. The individual modes can be observed under different polarizations and agree in number and wavenumber with those obtained by fitting the broad envelope with Lorentzians. An analysis of the Raman spectrum as a function of temperature, using the known magnetic properties of fayalite, allows the assignment of the low-energy excitations to short-range magnetic interactions. Modulation of the Fe2+(1)–Fe2+(2) exchange energy leads to phonon-magnetic excitation coupling and the main role in the Fe2+(1)–Fe2+(2) magnetic interaction occurs via superexchange through the oxygens. The magnetic excitations are not magnons in the usual sense, that is as quasiparticles having a long wavelength in an ordered system. The degree of observed broadening of the SiO4-stretching modes is consonant with a Fe2+(1)–Fe2+(2) exchange energy of 4.7 cm–1 presented by Schmidt et al. (1992). At temperatures above 300 K the line width of the mode at 840 cm–1 decreases slightly, whereas those of low energy lattice modes increase. This suggests that a decrease in mode broadening due to weakened magnetic interactions compensates any thermally related broadening. Complete Fe2+ spin disorder may not be reached until at least 530 K. Results from this study show that estimates of third-law entropies for silicates using simple crystal-chemical considerations that do not account for magnetic properties cannot give accurate values for many transition-metal-containing phases.  相似文献   
55.
SV波入射下地形条件对大跨刚构桥地震响应的影响   总被引:1,自引:0,他引:1  
王蕾  赵成刚  屈铁军 《地震学报》2008,30(3):307-314
计算了SV波在3种角度入射下两座山峰及其间自由场地的时程响应, 并以此作为两座山峰之间大跨桥的桥台及桥墩基础处的多点地震输入.这种地震输入考虑了行波传播效应和地形效应的综合影响. 然后基于多点激励下桥梁地震响应分析方法, 计算了地形条件下总长440 m的高墩连续刚构桥的墩顶位移及墩底内力, 并与忽略地形条件仅考虑行波效应时结构的响应进行了对比分析. 该结果可为建于复杂地形条件下结构的抗震设计提供参考.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号