首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   107篇
  国内免费   368篇
地球物理   101篇
地质学   1579篇
海洋学   11篇
天文学   3篇
综合类   42篇
自然地理   24篇
  2024年   7篇
  2023年   18篇
  2022年   20篇
  2021年   24篇
  2020年   30篇
  2019年   42篇
  2018年   39篇
  2017年   35篇
  2016年   37篇
  2015年   39篇
  2014年   35篇
  2013年   83篇
  2012年   62篇
  2011年   49篇
  2010年   38篇
  2009年   67篇
  2008年   53篇
  2007年   83篇
  2006年   80篇
  2005年   62篇
  2004年   70篇
  2003年   65篇
  2002年   56篇
  2001年   61篇
  2000年   57篇
  1999年   66篇
  1998年   53篇
  1997年   50篇
  1996年   56篇
  1995年   62篇
  1994年   54篇
  1993年   55篇
  1992年   33篇
  1991年   20篇
  1990年   20篇
  1989年   26篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   8篇
  1981年   1篇
排序方式: 共有1760条查询结果,搜索用时 15 毫秒
291.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   
292.
Abstract High‐ to ultrahigh‐pressure metamorphic (HP–UHPM) rocks crop out over 150 km along an east–west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet‐like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north‐dipping, fault‐bounded orogen‐parallel units (I–IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high‐pressure amphibolite through quartz–eclogite and coesite–eclogite to diamond–eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780–1000°C, P = 37–60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730–750°C, P = 11–14 kbar; Unit IV: T = 530°C, P = 7.5–9 kbar) and bottom (Unit I: T = 570–680°C; P = 7–13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top‐to‐the‐north) and top (top‐to‐the‐south) of the pile. The orogen‐scale architecture of the massif is sandwich‐like, with the HP–UHPM nappe group juxtaposed across large‐scale subhorizontal faults, against underlying low P–T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP–UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower‐grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30–40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab‐breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP–UHPM rocks.  相似文献   
293.
大别-苏鲁超高压变质带P-T-t轨迹的动力学模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
综合现有的地质、地球化学资料以及同位素年龄等研究成果,同时结合新西兰南岛北端陆壳俯冲的最新发现,提出了超高压变质岩的形成四阶段演化模式:板片俯冲形成增生楔、板片俯冲驱动角落流、板片拆离浮力抬升至Moho深度和后期上地壳伸展阶段.以此为定量模拟的出发点,利用二维有限元对大别-苏鲁超高压变质带的形成演化进行了动力学和热演化模拟,追踪超高压变质岩形成演化过程中的质点路径以及对应的P-T-t轨迹.计算的P-T-t轨迹及其空间分布特征均能与实测结果较好吻合.  相似文献   
294.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   
295.
Shigenori  Maruyama  J. G. Liou  Ruyuan  Zhang 《Island Arc》1994,3(2):112-121
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed.  相似文献   
296.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   
297.
大陆解体与被动陆缘的演化   总被引:3,自引:1,他引:3  
火山型被动陆缘是大陆解体过程中形成的一类陆缘类型,其演化过程与活动陆缘一样复杂多变。随着近年来对大陆解体过程与被动陆缘演化的深入研究,对其沉积过程、岩浆活动以及变质作用研究都有了很大的进展。陆壳减薄解体的过程有许多不同的模式,不对称的简单剪切模式可能是火山型被动陆缘的成因,其机制是软流圈隆起的最大位置从剖面上看与地壳减薄最大位置不在一条垂线上,造成软流圈上升的岩浆在解体的大陆一侧形成火山型被动陆缘。被动陆缘的沉积建造由两套沉积物组成,一套是大陆解体的裂谷阶段所形成的陆相沉积物和双模式火山岩组合,另一套是稳定陆缘的复理石组合;岩浆作用中基性岩类反应了物质直接源于上地幔的主要特点,并有部分受到地壳混染的特征;变质作用中高温低压环境主要发生在裂谷作用阶段,其特点反映了大陆解体过程中随着时间的增温和减压过程,而拆离伸展阶段则被脆性变形所代替。  相似文献   
298.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   
299.
The size and distribution of zircon within a garnet-mica-schist from the Scottish Highlands were assessed using scanning electron microscopy. The study reveals that abundant 0.2–3.0 μm sized zircon is preferentially concentrated within garnet and biotite porphyroblasts. The micro-zircon has grown during regional metamorphism and represents >90% of the total number of zircon in the schist. It is texturally distinct from a few larger detrital zircon grains in the schist that commonly preserve evidence of dissolution, and more rarely, small metamorphic outgrowths. The sequential incorporation of zircon in porphyroblasts allows prograde changes in the morphology of the zircon population to be identified. Zircon is reactive and soluble, and responds to medium-grade metamorphism in a series of dissolution and crystallization events, linked to possible changes in fluid composition. Deformation also has a significant influence on the distribution of zircon, allowing inclusions previously trapped within biotite to react. About 8 × 106 micro-zircon occur as inclusions within a typical individual 5-mm garnet porphyroblast and their presence must be considered prior to trace-element or isotopic analysis of such metamorphic phases.  相似文献   
300.
U–Pb isotopic data from the northern Monashee complex, one of the deepest structural exposures in the southern Canadian Cordillera, indicate that the age of metamorphism varies according to structural position in a 6 km thick section. This metamorphism resulted in an unusual sequence in which rocks with the lowest-grade mineral assemblage (kyanite–sillimanite–staurolite–muscovite) are underlain and overlain by higher-grade rocks. Xenotime and monazite U–Pb dates vary progressively from 64 Ma in the structurally highest rocks to 49 Ma in the deepest rocks. Discordant U–Pb ages from Proterozoic and Cretaceous monazite and titanite are used to interpret the thermal significance of the early Tertiary dates. The discordant analyses define linear arrays with lower intercepts that broadly overlap with early Tertiary, and the amount of discordance varies with structural level; it is least in the deeper rocks and greatest in higher rocks. Electron microprobe work showed that the monazite discordance in the deeper rocks resulted from Tertiary mineral overgrowth and recrystallization rather than Pb diffusion. We use previous studies of Pb diffusion and the fact that Proterozoic monazite and titanite suffered only negligible to moderate amounts of diffusive Pb loss to contend that elevated temperatures (c. 600–650 °C are inferred from pelitic mineral assemblages) existed in the deeper rocks for a short duration, perhaps a few million years. The downwards younging 64–49 Ma U–Pb dates are interpreted as closely reflecting xenotime and monazite growth ages rather than cooling ages or substantially reset ages based on the lack of Pb diffusion in monazite and the previously obtained 40Ar/39Ar data which suggest that rapid cooling occurred immediately after the U–Pb dates. In addition, growth ages are interpreted as thermal peak ages based on U–Pb dates from coeval kyanite-bearing leucosomes, the consistent nature of the U–Pb dates throughout the study area, and petrographic relationships which suggest that monazite grew before or during development of the syn-metamorphic foliation. These interpretations lead us to conclude that metamorphism was diachronous according to structural level, with higher rocks attaining peak temperatures and cooling rapidly while deeper rocks were heating towards a thermal peak that was attained a few million years later. This thermal scenario requires that higher rocks cannot have been the heat source for the deeper metamorphism, as was previously proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号