首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1285篇
  免费   107篇
  国内免费   368篇
地球物理   101篇
地质学   1579篇
海洋学   11篇
天文学   3篇
综合类   42篇
自然地理   24篇
  2024年   7篇
  2023年   18篇
  2022年   20篇
  2021年   24篇
  2020年   30篇
  2019年   42篇
  2018年   39篇
  2017年   35篇
  2016年   37篇
  2015年   39篇
  2014年   35篇
  2013年   83篇
  2012年   62篇
  2011年   49篇
  2010年   38篇
  2009年   67篇
  2008年   53篇
  2007年   83篇
  2006年   80篇
  2005年   62篇
  2004年   70篇
  2003年   65篇
  2002年   56篇
  2001年   61篇
  2000年   57篇
  1999年   66篇
  1998年   53篇
  1997年   50篇
  1996年   56篇
  1995年   62篇
  1994年   54篇
  1993年   55篇
  1992年   33篇
  1991年   20篇
  1990年   20篇
  1989年   26篇
  1988年   10篇
  1987年   12篇
  1986年   12篇
  1985年   4篇
  1984年   6篇
  1983年   8篇
  1981年   1篇
排序方式: 共有1760条查询结果,搜索用时 0 毫秒
161.
素有"黑金子"称谓的石墨,是传统工业和战略性新兴产业必须的矿物原料。文章以阿尔金南缘金鸿山—俄博梁地区的晶质石墨矿床为研究对象,通过成矿地质条件、控矿因素研究,分析了矿床成因。认为金鸿山—俄博梁地区具备较好的晶质石墨矿找矿潜力。  相似文献   
162.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   
163.
The Xilingol Complex comprises biotite gneisses and amphibolite interlayers with extensive migmatization. Four representative samples were documented and found to record either two or three metamorphic stages. Phase modelling using thermocalc suggests that the observed assemblages represent the final stages that underwent cooling from temperature peaks, and are consistent with a fluid‐absent solidus in P–T pseudosections. Their P–T conditions are further constrained to be 5–6 kbar/680–725°C and 4–5 kbar/650–680°C for two garnet‐bearing gneiss samples, 4–5 kbar/660–730°C for a cordierite‐bearing gneiss sample, and 4–5 kbar/680–710°C for an amphibolite sample based on mineral composition isopleths, involving measured Mg content in biotite, anorthite in plagioclase, grossular and pyrope in garnet and Ti content in amphibole. The peak temperature conditions recovered are 760–790°C or >760°C at 5–6 kbar based on the composition isopleths of plagioclase, biotite, garnet and especially the comparison of melt contents between the calculated and observed. A pre‐peak heating process with slight decompression can be suggested for some samples on the basis of the core–rim increase in the plagioclase anorthite, and the stability of ilmenite. Zircon U–Pb dating using the LA‐ICP‐MS method provides systemic constraints on the metamorphic ages of the Xilingol Complex to be 348–305 Ma, interpreted to represent the post‐peak cooling stages. Moreover, metagabbroic dykes that intruded into the Xilingol Complex yield 317 ± 3 Ma from magmatic zircon, and are considered to have played a significant role for heat advection triggering the high‐T and low‐P metamorphism. Thus, the clockwise P–T paths involving pre‐peak heating, peak and post‐peak cooling recovered for the Xilingol Complex are consistent with an extensional setting in the Carboniferous that developed on a previous orogen in response to addition of mantle‐derived materials probably together with upwelling of the asthenospheric mantle.  相似文献   
164.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   
165.
《International Geology Review》2012,54(12):1446-1461
ABSTRACT

Meta-pelitic rocks with interlayers of meta-psammites within the inner thermal aureole of the Alvand plutonic complex (Sanandaj-Sirjan Zone (SaSZ), western Iran) underwent partial melting; generating various types of migmatites. The mesosome of the Hamedan migmatites is classified into two groups: (1) cordierite-rich and Al-silicate-poor mesosomes and (2) cordierite-poor, Al-silicate-rich groups. Leucosomes are also variable, ranging from plagioclase-rich to K-feldspar-rich leucosomes. Mineral-chemical studies and thermobarometric estimations indicate temperature and pressure of 640–700°C and 3–5 kbar, respectively, for the formation of mesosomes. U–Pb zircon geochronology on 214 grains from the mesosome of migmatites indicates ages of 160–180 Ma (ca ~170 Ma) for zircon metamorphic rims and variable ages of 190–2590 Ma for the inherited detrital zircon cores. Inherited core ages show various age populations, but age populations at 200–600 Ma are more frequent. The age populations of the detrital zircons clarify that the provenance of the younger zircon grains (200–500 Ma) was more likely the Iranian plate, whereas the older grains (600 Ma to >2.5 Ga) may be sourced from both northern Gondwana (such as Arabian-Nubian Shield) and the neighbouring, old cratons like as Africa. We suggest that magmatic activities, especially mafic plutonism at ~167 Ma, are the main triggers for the heat source of metamorphism, partial melting, and migmatization. In contrast to a presumed idea for a Cretaceous regional metamorphic event in the NW parts of the SaSZ, this study attests that the metamorphism should be older and can be associated with Jurassic magmatic pulses.  相似文献   
166.
The structure of the Dalradian rocks of the Banffshire coast has been re-examined. It is shown that D1 structures face upwards along the entire section and the major Boyndie Syncline (Sutton and Watson 1956) must also be of D1, age and not D3 as proposed by Johnson (1962). D2 structures are developed in the west, most strongly in the Portsoy Group and Cowhythe Gneiss where they may be related to the Portsoy Thrust (Elles 1931). East of the Cowhythe Gneiss D2 structures are not developed but D3 structures are of local importance. Porphyroblast growth is considered to be post-D1, pre-D3 related to the ‘active’ D2 deformation in the west (Barrovian) and to the ‘static’ D2 interval in the east (Buchan). The wider implications of these conclusions for Dalradian structure are briefly considered.  相似文献   
167.
本文从超高压变质作用的矿物学、P-T-t轨迹和超高压地体抬升、保存机制三个方面总结了近年来超高压变质作用研究所取得的重要进展和存在的问题。超高压变质作用的矿物学研究正在向深入发展,其P-T-t轨迹具有三种成因类型。而其超高压地体的抬升、保存机制则是争论的焦点,其中增生楔模式(Platt,1987)和连续俯冲─仰冲机制较好地解释了抬升过程,但也存在一些问题需进一步研究。  相似文献   
168.
下庄矿田基底的控矿作用及其有关地质问题   总被引:4,自引:2,他引:4  
徐达忠  薛振华 《铀矿地质》1994,10(3):150-155
本文提出武夷及其邻区存在两个裂陷槽及一裂隆,鹰潭-南城-安远-河源韧性断裂带为东部的火山岩型与西部的花岗岩型铀矿床的地质分界线,指出了加里东运动在本区的突出作用是使裂隆基底岩石发生混合花岗岩化作用。根据下庄矿田及其外围发现较深变质的岩石和较大规模韧性剪切糜棱岩带,得出下庄矿田是古老基底加里东热穹隆区多次构造、岩浆活动的产物。由于铀成矿作用赋存于初、脆性两种构造中,建议重新划分矿化类型以指导勘查工作。  相似文献   
169.
The prograde deserpentinized peridotites from the talc zone in the Happo-O’ne complex, central Japan, show differences in their field relation and mineral assemblage with the high-P retrograde peridotites of the other part of the complex. They show a mineral assemblage, olivine + talc + antigorite ± prograde tremolite ± chlorite, formed by thermal metamorphism around the granitic intrusion at T, 500-650 °C and P < 7 kbar. The olivine has numerous opaque inclusions and high Fo (91.5-96.5) relative to the retrograde olivine, reflecting its formation by deserpentinization. The prograde tremolite, which is low in Al2O3 (<1.0 wt.%), Cr2O3 (<0.35 wt.%), and Na2O (<0.6 wt.%) but high in Mg# (up to 0.98) and SiO2 (up to 59.9 wt.%), is different in size, shape and chemistry from the retrograde tremolite. The prograde peridotites display a U-shaped REE pattern (0.02-0.5 times PM), similar to diopside-zone retrograde metaperidotites, possible protoliths. They are enriched in LILE (e.g., Cs, Pb, Sr, Rb) relative to HFSE (e.g., Ta, Hf, Zr, Nb), like their protoliths, because of their local re-equilibration with the fluid released during dehydration of the protoliths. They have high contents of REE and some trace elements (e.g., Cs, Th, U, Ta) relative to their protoliths because of an external-element addition from the granitic magma. In-situ analyses of peridotitic silicates confirmed that the prograde tremolite and talc display a spoon-shaped primitive mantle (PM)-normalized REE pattern (0.1-3 times PM) in which LREE are higher than HREE contents. The prograde tremolite is depleted in Al, Na, Cr, Sc, V, Ti, B, HREE and Li, but is enriched in Si, Cs, U, Th, HFSE (Hf, Zr, Nb, Ta), Rb and Ba relative to the retrograde tremolite; the immobile-element depletion in this tremolite is inherited from its source (antigorite + secondary diopside), whereas the depletion of mobile elements (e.g., Li, B, Na, Al) is ascribed to their mobility during the deserpentinization and/or the depleted character of the source of tremolite. The enrichment of HFSE and LILE in the prograde tremolite is related to an external addition of these elements from fluid/melt of the surrounding granitic magma and/or in situ equilibrium with LILE-bearing fluid released during dehydration of serpentinized retrograde metaperidotites and olivine-bearing serpentinites (protoliths). The prograde olivine is higher in REE and most trace-element contents than the retrograde one due to the external addition of these elements; it is enriched in B, Co and Ni, but depleted in Li that was liberated during deserpentinization by prograde metamorphism.  相似文献   
170.
弓长岭铁矿床磁铁富矿形成机制探讨   总被引:9,自引:0,他引:9  
弓长岭沉积变质型铁矿床是我国鞍山式铁矿床的典型代表,矿床中的磁铁富矿体的形成一直都是矿床研究的重点问题。研究表明,弓长岭富铁矿体赋存于反S型褶皱中,局部矿体出现褶曲现象。磁铁富矿体产于主要是由斜长角闪石、磁铁石英岩构成的含铁岩系中。磁铁富矿的围岩主要是绿泥片岩、石榴绿泥片岩、绿泥石榴岩和少量黑云母绿泥片岩。对绿泥石片岩、石榴绿泥片岩和绿泥石榴岩的常量、微量与稀土元素的研究和对绿泥石、石榴石、黑云母铁含量与磁铁矿品位的研究表明,含铁岩系在沉积间歇中出现的含铝的泥质-粉砂质物质在富铁矿形成过程中起对磁铁石英岩中带出的硅消耗(带入)形成石榴石、绿泥石、黑云母等的作用。区域变质作用为磁铁富矿的形成提供了储矿空间,同时区域变质作用产生变质热液,变质热液淋滤途经的磁铁石英岩可从中带出FeO,变质热液是磁铁富矿形成过程中重要的物质载体。在进变质过程中,区域变质作用为矿物转换提供所需的温压条件。可见,区域变质作用是磁铁富矿形成的重要条件。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号