首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   15篇
  国内免费   6篇
测绘学   1篇
大气科学   7篇
地球物理   29篇
地质学   21篇
海洋学   30篇
综合类   2篇
自然地理   8篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有98条查询结果,搜索用时 46 毫秒
51.
We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ‘wet’ graminoid meadow vegetation were on average five times stronger than those colonized by ‘dry’ xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
52.
金沙江河谷金坪子堆积体成因及其地质意义*   总被引:3,自引:7,他引:3       下载免费PDF全文
对金沙江下段河谷金坪子堆积体及其临近区域进行了详细的野外调查,在堆积体不同部位进行钻孔、竖井、平硐作业并取样,室内进行测年和重矿物成分分析,运用地貌学、沉积学和年代学方法进行综合研究,获得了堆积体的成因及其地质意义的初步认识。金坪子堆积体形成时间为197.7±9.9~137.0±6.8kaB.P. ,是金沙江不均匀深切形成的深槽被深槽岩壁的崩坡积物和坡积物与金沙江流水带来的冲积物填充形成,为崩坡积物和坡积物夹河流冲积物的复合斜坡堆积体,堆积体揭示了金沙江河谷的不均匀深切。  相似文献   
53.
Planform dynamics of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765–1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime‐type analyses of channel length and width for the LMR as a ‘single system’. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more‐or‐less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
54.
Small river channels within the Humber Basin of Southern Ontario exhibit irregular meandering patterns; however, contemporary river hydrology appears capable of controlling the scale of regular waveform development. Recent changes in river planform are assessed through a bi‐temporal comparison of channel planform using orthorectified aerial photography and statistical analysis of curvature series based on autocorrelation and spectral analysis. Calculated meander wavelengths are acceptable given traditional relationships between wavelength and mean annual flood discharge. It is also evident that changes in stream power are highly correlated with changes in the dominant wavelengths between channel reaches in this study. Gradual development of small scale waveforms following a rare hydrological and geomorphological event in 1954 further confirms that these forms can be attributed to the typical discharge regime. This paper argues that the scaling of wavelengths with discharge can be considered a strong factor controlling planform evolution on some small meandering river systems, despite manifest irregular planforms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
55.
《Sedimentology》2018,65(4):1354-1377
The widespread distribution of tidal creeks and channels that undertake meandering behaviour in modern coasts contrasts with their limited documentation in the fossil record, where point‐bar elements arising from the interaction between a mix of both fluvial and tidal currents are mainly documented. The sedimentary products of tidal channel‐bend evolution are relatively poorly known, and few studies have focused previously on specific facies models for tidal point bars present in modern settings. This study improves understanding of tidal channel meander bends through a multi‐disciplinary approach that combines analyses of historical aerial photographs, measurements of in‐channel flow velocity, high‐resolution facies analyses of sedimentary cores and three‐dimensional architectural modelling. The studied channel bend (12 to 15 m wide and 2 to 3 m deep) drains a salt marsh area located in the north‐eastern sector of the microtidal Venice Lagoon, Italy. Historical photographs show that, during the past 77 years, the bend has translated seaward ca 15 m. Results show that the channel bend formed on a non‐vegetated mud flat that was progressively colonized by vegetation. Seaward translation occurred under aggradational conditions, with an overall migration rate of 0·2 to 0·3 m year−1, and was promoted by the occurrence of cohesive, poorly erodible outer bank deposits. Ebb currents are dominant, and translation of the channel bend promotes erosion and deposition along the landward and seaward side of the bar, respectively. Tidal currents show a clear asymmetry in terms of velocity distribution, and their offset pattern provides a peculiar grain‐size distribution within the bar. During the flood stage, sand sedimentation occurs in the upper part of the bar, where the maximum flow velocity occurs. During the ebb stage, the bar experiences the secondary helical flow that accumulates sand at the toe of the bar. Lateral stacking of flood and ebb deposits has caused the formation of localized coarsening‐upward and fining‐upward sedimentary packages, respectively.  相似文献   
56.
Ostia, the ancient port of Rome at the mouth of the river Tiber (Italy), flourished until the 2nd Century ad , although massive siltation had already caused the abandonment of its lagoonal harbour in the 1st Century bc . In search of an alternative harbour site, geomorphological and geoarchaeological research was carried out in the ‘Fiume Morto’, an abandoned Tiber meander to the immediate north of the town. To reconstruct its complex development and evaluate the suitability of the river channel as a fluvial harbour, a transect perpendicular to the former river channel's flow axis was systematically explored by a new methodological approach combining electrical resistivity tomography, direct push-electrical conductivity sensing and vibracores. Together with microfossil, mineralogical and geochemical analyses of sediment samples and 50 radiocarbon dates, in-depth stratigraphic data support a detailed reconstruction of different Tiber channel generations. Results reveal a meander development closely related to distinct ‘cut and fill’ dynamics. Inactive river channels were repeatedly filled with lagoonal sediments, abruptly followed by phases of intense incision. Yet, the overall Fiume Morto channel structure remained stable and almost in situ over centuries, showing nearly no lateral changes since the southward shift of the Tiber River mouth in the first millennium bc . In the 1st Century bc , channel conditions favoured navigation and transportation of goods with large ships. Open-water conditions, suitable for anchoring and landing activities, dominate from the 1st Century ad until 1557 ad , when the Fiume Morto meander was finally cut off and silted up within a short time. Within the fluvial deposits, sediments most likely related to tsunami inundations are preserved. These events occurred sometime before the 2nd Century bc , in the early 1st Century ad and in the 17th Century ad or later. Results are consistent with traces of tsunami influence found in Ostia's western lagoonal harbour.  相似文献   
57.
This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984–1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These high sediment loads play a key role in driving morphological adjustments towards equilibrium in the cutoff channel.The approach followed in this paper combines detailed episodic in-situ aDcp measurements and robust numerical 1D modeling in order to provide a practical comprehension of the relevant morphodynamical processes. The 1D model reproduces robustly the continuity of hydrodynamical variables along the streamwise axes of the two-channel network. The simulated are used in the paper for highlighting reach-scale morphological processes, at both event and long-term scales.  相似文献   
58.
Bifurcation current along the southwest coast of the Kii Peninsula   总被引:1,自引:0,他引:1  
Along the southwest coast of the Kii Peninsula, a bifurcation current is regularly observed. By using ADCP data taken on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station, characteristics of this bifurcation current are analyzed. The occurrence frequency of the bifurcation current reaches about 70% in the period from 1988 to 1996. The bifurcation point appears to be changeable and occurs almost evenly between Cape Ichie and Cape Shionomisaki. The current divergence in the alongshore direction was also investigated. Positive divergence values dominated in the whole analyzed area, and an onshore current appears to be dominant along the southwest coast of the Kii Peninsula, except in 1990 when the Kuroshio flowed in a large meandering path.  相似文献   
59.
Xia LIU  Qiang WANG  Mu MU 《大气科学进展》2018,35(11):1362-1371
Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors.  相似文献   
60.
A numerical experiment of an asynchronous coupled ocean-atmosphere model has been described in this paper.Atwo-layer global atmosphere general circulation model(OSU/IAP-AGCM)and a two-layer North Pacific Oceangeneral circulation model(NPOGCM)developed by Liu et al.(1992)are used in numerical experiment.The sea surfacetemperature anomaly(SSTA)corresponding to the meander of the Kuroshio is treated as the initial perturbation in thePacific Ocean and the abnormal phenomena caused by the disturbance and the interaction between atmosphere andocean,have been studied.The numerical experiment showed that the SST anomaly in the North Pacific could induce a new 30—60 dayoscillation through the coupling between atmosphere and ocean and the interaction between the meander of theKuroshio and atmosphere circulation is a positive feedback process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号