首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3699篇
  免费   866篇
  国内免费   720篇
测绘学   137篇
大气科学   95篇
地球物理   230篇
地质学   1155篇
海洋学   3149篇
天文学   8篇
综合类   264篇
自然地理   247篇
  2024年   55篇
  2023年   139篇
  2022年   196篇
  2021年   214篇
  2020年   244篇
  2019年   232篇
  2018年   180篇
  2017年   187篇
  2016年   203篇
  2015年   171篇
  2014年   243篇
  2013年   275篇
  2012年   241篇
  2011年   259篇
  2010年   207篇
  2009年   231篇
  2008年   167篇
  2007年   197篇
  2006年   209篇
  2005年   207篇
  2004年   179篇
  2003年   176篇
  2002年   155篇
  2001年   102篇
  2000年   117篇
  1999年   97篇
  1998年   53篇
  1997年   52篇
  1996年   52篇
  1995年   38篇
  1994年   38篇
  1993年   34篇
  1992年   33篇
  1991年   24篇
  1990年   18篇
  1989年   12篇
  1988年   9篇
  1987年   6篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1954年   1篇
排序方式: 共有5285条查询结果,搜索用时 31 毫秒
141.
The Cretaceous system of the Kuqa depression is a regional scale (second order) depositional sequence defined by parallel unconformities or minor angular unconformities. It can be divided into four third-order sequence sets, eleven third-order sequences and tens of fourth- and fifth-order sequences. It consists generally of a regional depositional cycle from transgression to regression and is composed of three sets of facies associations: alluvial-fluvial, braided river-deltaic and lacustrine-deltaic facies associations. They represent the lowstand, transgressive and highstand facies tracts within the second-order sequence. The tectonic subsidence curve reconstructed by backstripping technique revealed that the Cretaceous Kuqa depression underwent a subsidence history from early accelerated subsidence, middle rapid subsidence and final slower subsidence phases during the Cretaceous time, with the correspondent tectonic subsidence rates being 30-35 m/Ma, 40-45 m/Ma and 5-10 m/Ma obtained from northern foredeep. This is likely attributed to the foreland dynamic process from early thrust flexural subsidence to late stress relaxation and erosion rebound uplift. The entire sedimentary history and the development of the three facies tracts are a response to the basin subsidence process. The slower subsidence foreland gentle slope was a favorable setting for the formation of braided fluvial deltaic systems during the late period of the Cretaceous, which comprise the important sandstone reservoirs in the depression. Sediment records of impermanent marine transgression were discovered in the Cretaceous and the major marine horizons are correctable to the highstands of the global sea level during the period.  相似文献   
142.
A multi‐proxy approach was used to examine the geomorphic dynamics and environmental history of an upper deltaic ?oodplain tract in the Sacramento–San Joaquin Delta, California. Three long cores were collected from the McCormack–Williamson Tract (MWT) and these cores were analyzed for bulk density, loss‐on‐ignition, ?ne (clay and silt) content, Al concentration, magnetic susceptibility, pollen, and charcoal. Radiocarbon dates obtained for the cores were converted into calendar years and an age–depth model was constructed. Long‐term vertical accretion and sedimentation rates were estimated from the age–depth model. Cross‐core relations show that coarse sediment generally accumulates more rapidly and has greater magnetic susceptibility compared to ?ne sediment. Percentage ?ne and LOI data show a strong linear relationship that indicates ?ooding is the primary mechanism for the deposition of particular organic matter on the ?oodplain and that landscape wash load has contributed a highly consistent fraction of persistent organic matter averaging 5·5 per cent to the site. Down‐core grain size pro?les show two hydrological domains in the cores, namely millennial ?ne–coarse ?uctuations superimposed on general up‐core ?ning. Coarse sediment is viewed as channel or near‐channel overbank deposits, whereas ?ne deposits are considered to be distal overbank ?ood deposits. The coarse–?ne ?uctuations are indicative of changing depositional settings as channels migrated laterally across MWT, whereas the upward ?ning trend re?ects a combination of self‐limiting overbank deposition as ?oodplain elevation increased and decreasing competence as sea‐level rise reduced ?ood‐pulse energy slopes. MWT has been cross‐cut and incised numerous times in the past, only to have the channels abandoned and subsequently ?lled by ?ne sediment. The channels around MWT attained their modern con?guration about 4000 years ago. MWT likely came under tidal in?uence at about 2500 cal BP. Wetlands have recently developed on MWT, but they are inorganic sediment dominated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
143.
Sediments contain abundant lipid compounds in general, which are used as biomarker compounds to study organic matter sources and reconstruct the pa-laeoenvironments[1—7]. However, lipid compounds in sediments are generally a mixture of various genetic components so that it is difficult to correctly decouple their biological sources only by the results of bio-chemical researches. Carbon isotopic studies of indi-vidual sedimentary lipid compounds can discover their genetic information, which pr…  相似文献   
144.
In the Oulad Abbou syncline, western coastal Meseta, the Silurian deposits exhibit siliciclastic or mixed siliciclastic/carbonate tidal facies that recorded alkaline basalt flows and syn-sedimentary deformations. These facies are staked into peritidal shallowing upward sequences reflecting the evolution from an infratidal to a supratidal environment. These sequences recorded low-amplitude and high-frequency sea-level variations. The built-up of these rhythmic sequences is related to distensive tectonic that allowed the development of isolated platform from extensive siliciclastic influx. This tectonic event is well recorded in the palaeogeographic evolution of the northern Gondwana platform during the Lower Palaeozoic time. To cite this article: A. Attou, N. Hamoumi, C. R. Geoscience 336 (2004).  相似文献   
145.
Neotectonic observations allow a new interpretation of the recent tectonic behaviour of the outer fore arc in the Caldera area, northern Chile (27°S). Two periods of deformation are distinguished, based on large-scale Neogene to Quaternary features of the westernmost part of the Coastal Cordillera: Late Miocene to Early Pliocene deformations, characterized by a weak NE–SW to E–W extension is followed by uppermost Pliocene NW–SE to E–W compression. The Middle Pleistocene to Recent time is characterized by vertical uplift and NW–SE extension. These deformations provide clear indications of the occurrence of moderate to large earthquakes. Microseismic observations, however, indicate a lack of shallow crustal seismicity in coastal zone. We propose that both long-term brittle deformation and uplift are linked to the subduction seismic cycle.  相似文献   
146.
147.
148.
High‐resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long‐term volume of material that enters the nearshore environment. During the 52‐year measurement time period, an average of 21 000 ± 3100 m3 km?1 a?1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ± 240 m3 km?1 a?1 and a high of 46 700 ± 7300 m3 km?1 a?1. The results compare well with known volumes from several deep‐seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope‐forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   
149.
230Th, 232Th and 234Th were analyzed in sinking particles collected by moored and drifting sediment traps in the NE Atlantic Ocean (POMME experiment) in order to constrain the phase(s) carrying Th isotopes in the water column. It reveals a contrasted behaviour between 234Th and 230Th. 234Th is correlated to the particulate organic carbon suggesting that it is primarily scavenged by organic compounds in the surface waters. 230Thxs is correlated with Mn, Ba and the lithogenic fraction that are enriched in small suspended particles and incorporated in the sinking particulate flux throughout the water column. The lack of correlation between 230Thxs and CaCO3 or biogenic silica (bSi) indicates that CaCO3 and bSi are not responsible for 230Th scavenging in the deep waters of this oceanic region. 230Th is generally correlated with the lithogenic content of the trapped material but this correlation disappears in winter during strong atmospheric dust inputs suggesting that lithogenic matter is not directly responsible for 230Th scavenging in the deep waters or that sufficient time is required to achieve particle–solution equilibration. MnO2 could be the prevalent 230Thxs-bearing phase. The narrow range of Kd_MnO2Th obtained for very contrasted oceanic environments supports a global control of 230Thxs scavenging by MnO2 and raises the possibility that the 230Th–231Pa fractionation is controlled by the amount of colloidal MnO2 in seawater.  相似文献   
150.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号