首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8713篇
  免费   2059篇
  国内免费   2229篇
测绘学   94篇
大气科学   1016篇
地球物理   3954篇
地质学   3656篇
海洋学   2964篇
天文学   84篇
综合类   372篇
自然地理   861篇
  2024年   61篇
  2023年   164篇
  2022年   249篇
  2021年   306篇
  2020年   338篇
  2019年   438篇
  2018年   327篇
  2017年   317篇
  2016年   319篇
  2015年   398篇
  2014年   415篇
  2013年   447篇
  2012年   542篇
  2011年   498篇
  2010年   390篇
  2009年   501篇
  2008年   508篇
  2007年   712篇
  2006年   615篇
  2005年   544篇
  2004年   562篇
  2003年   472篇
  2002年   439篇
  2001年   377篇
  2000年   375篇
  1999年   358篇
  1998年   364篇
  1997年   301篇
  1996年   297篇
  1995年   273篇
  1994年   238篇
  1993年   214篇
  1992年   145篇
  1991年   139篇
  1990年   85篇
  1989年   67篇
  1988年   71篇
  1987年   57篇
  1986年   26篇
  1985年   15篇
  1984年   5篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1954年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
The response of an ideal elastic half‐space to a line‐concentrated impulsive vector shear force applied momentarily is obtained by an analytical–numerical computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. The shear force is concentrated along an infinite line, drawn on the surface of the half‐space, while being normal to that line as well as to the axis of symmetry of the half‐space. An exact loading model is introduced and built into the computational method for this shear force. With this model, a compatibility exists among the prescribed applied force, the geometric decay of the shear stress component at the precursor shear wave, and the boundary conditions of the half‐space; in this sense, the source configuration is exact. For the transient boundary‐value problem described above, a wave characteristics formulation is presented, where its differential equations are extended to allow for strong discontinuities which occur in the material motion of the half‐space. A numerical integration of these extended differential equations is then carried out in a three‐dimensional spatiotemporal wavegrid formed by the Cartesian bicharacteristic curves of the wave characteristics formulation. This work is devoted to the construction of the computational method and to the concepts involved therein, whereas the interpretation of the resultant transient deformation of the half‐space is presented in a subsequent paper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号