首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  国内免费   2篇
地球物理   22篇
海洋学   2篇
天文学   106篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2013年   18篇
  2012年   5篇
  2011年   10篇
  2010年   16篇
  2009年   3篇
  2008年   22篇
  2007年   15篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1996年   1篇
  1991年   1篇
  1990年   3篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
91.
The toroidal magnetic field frozen in the relativistic plasma ejected by pulsars must play a significant role in the formation of jet-like features observed in the central parts of plerions. We performed a semiquantitative analysis and calculations of the plasma flow in a plerion using the perturbation theory. We show that for the latitudinal magnetic-field distribution expected during the interaction of the pulsar wind with the interstellar medium, the magnetic field will have an appreciable effect on the flow primarily near the rotation axis. In the equatorial region, the effect of the magnetic field is negligible up to distances of 7rsh.  相似文献   
92.
We present local numerical models of accretion disk turbulence driven by the magnetorotational instability with varying shear rate. The resulting turbulent stresses are compared with predictions of a closure model in which triple correlations are modelled in terms of quadratic correlations. This local model uses five nondimensional parameters to describe the properties of the flow. We attempt to determine these closure parameters for our simulations and find that the model does produce qualitatively correct behaviour. In addition, we present results concerning the shear rate dependency of the magnetic to kinetic energy ratio. We find both the turbulent stress ratio and the total stress to be strongly dependent on the shear rate (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
93.
The connection between orbital period modulation and magnetic activity in close binaries is reviewed with an emphasis on the comparison between observational data for RS CVn systems and recently proposed theoretical models. The orbital period changes occurring on timescales of the order of a few decades can be accounted for by means of a standing torsional Alfven wave in the convection zone of the magnetically active components of such systems. Two resonant excitation mechanisms based on the coupling between the wave and an αΩ dynamo are discussed from a qualitative point of view. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
94.
A plane‐shear flow in a fluid with forced turbulence is considered. If the fluid is electrically‐conducting then a mean electromotive force (EMF) results even without basic rotation and the magnetic diffusivity becomes a highly anisotropic tensor. It is checked whether in this case self‐excitation of a large‐scale magnetic field is possible (so‐called × ‐dynamo) and the answer is NO. The calculations reveal the cross‐stream components of the EMF perpendicular to the mean current having the wrong signs, at least for small magnetic Prandtl numbers. After our results numerical simulations with magnetic Prandtl number of about unity have only a restricted meaning as the Prandtl number dependence of the diffusivity tensor is rather strong. If, on the other hand, the turbulence field is strati.ed in the vertical direction then a dynamo‐active α ‐effect is produced. The critical magnetic Reynolds number for such a self‐excitation in a simple shear flow is slightly above 10 like for the other – but much more complicated – flow patterns used in existing dynamo experiments with liquid sodium or gallium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
95.
Star‐disc coupling is considered in numerical models where the stellar field is not an imposed perfect dipole, but instead a more irregular self‐adjusting dynamo‐generated field. Using axisymmetric simulations of the hydromagnetic mean‐field equations, it is shown that the resulting stellar field configuration is more complex, but significantly better suited for driving a stellar wind. In agreement with recent findings by a number of people, star‐disc coupling is less efficient in braking the star than previously thought. Moreover, stellar wind braking becomes equally important. In contrast to a perfect stellar dipole field, dynamo‐generated stellar fields favor field‐aligned accretion with considerably higher velocity at low latitudes, where the field is weaker and originating in the disc. Accretion is no longer nearly periodic (as it is in the case of a stellar dipole), but it is more irregular and episodic. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
96.
A two-dimensional magnetohydrodynamic model of the dynamics of tail-like current layers caused by anomalous electrical resistivity in a plasma with lower-hybrid-drift (LHD) turbulence is considered. Additionally to the LHD-resistivity, a resistivity pulse in the magnetic neutral sheet is given initiating a magnetic reconnection process. Then the temporal and spatial evolution of the magnetic and electric fields, the plasma convection and the anomalous resistivity are obtained numerically. Taking into account more exact expressions for the LHD-resistivity in the current layer as done in former works, the LHD-turbulence is found to be excited farther from the neutral sheet, and thus, with the time, secondary current sheets are obtained in the plasma-magnetic field system. It is shown that the inductive electric field moving from the magnetic neutral sheet to the current layer periphery during the reconnection process may be considered as indicator of the plasma disturbances.  相似文献   
97.
Magnetorotational instability (MRI) is one of the most important and most common instabilities in astrophysics. It is widely accepted that it serves as a source of turbulent viscosity in accretion disks – the most energy efficient objects in the Universe. However it is very difficult to bring this process down on earth and model it in a laboratory experiment. Several different approaches have been proposed, one of the most recent is PROMISE (Potsdam‐ROssendorf Magnetorotational InStability Experiment). It consists of a flow of a liquid metal between two rotating cylinders under applied current‐free spiral magnetic field. The cylinders must be covered with plates which introduce additional end‐effects which alter the flow and make it more difficult to clearly distinguish between MRI stable and unstable state. In this paper we propose simple and inexpensive improvement to the PROMISE experiment which would reduce those undesirable effects. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
98.
In view of the Turbulent Cooling Flows scenario we carry out several 3D axisymmetric calculations to follow the evolution of magnetically subcritical weakly ionized and rotating turbulent cloud cores. Turbulent Cooling Flows appear to pronounce the effects of ambipolar diffusion considerably, inducing thereby a runaway collapse of the core already on a diluted free-fall time scale. Ambipolar diffusion significantly weakens the efficiency of magnetic braking. This implies that most of the rotational energy is trapped into the dynamically collapsing core and that initiation of outflows is prevented at least in the early isothermal phases. The trapped rotational energy is found to enhance the formation of rings that may afterwards fragment. It is shown that the central region of a strongly ionized magnetically subcritical core is principally overdense, with central density up to one order of magnitude larger than the surroundings. These results confirm that large scale magnetic fields threading a cloud core relax the supersonic random motions on an Alfvén wave crossing time. Moreover, ambipolar diffusion enhances dissipation of supersonic turbulence even more.  相似文献   
99.
The effects of uniform horizontal shear on a stably stratified layer of gas is studied. The system is initially destabilized by a magnetically buoyant flux tube pointing in the cross‐stream direction. The shear amplifies the initial field to Lundquist numbers of about 200–400, but then its value drops to about 100–300, depending on the value of the sub‐adiabatic gradient. The larger values correspond to cases where the stratification is strongly stable and nearly isothermal. At the end of the runs the magnetic field is nearly axisymmetric, i.e. uniform in the streamwise direction. In view of Cowling's theorem the sustainment of the field remains a puzzle and may be due to subtle numerical effects that have not yet been identified in detail. In the final state the strength of the magnetic field decreases with height in such a way that the field is expected to be unstable. Low amplitude oscillations are seen in the vertical velocity even at late times, suggesting that they might be persistent (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
100.
Instability of whistler wave in collisionless current sheet is studied with numerical solution of the general dispersion relation obtained in Ref.[4] for the physical model A. As revealed by the results, the whistler wave can be directly absorbed by collisionless current sheets. On the neutral sheet (z/di = 0) oblique whistler waves over a rather wide range of wave numbers can propagate, while they are basically stable. In the ionic inertial region (z/di < 1), the obliquely propagating whistler wave is unstable. On the edge of the ionic inertial region (z/di = 1), the whistler wave is still unstable, with an increase in the growth rate, and in the frequency of the unstable wave. The growth rate is larger for the whistler wave propagating towards the neutral sheet (kzdi < 0) than away from the neutral sheet (kzdi > 0).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号