首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  国内免费   2篇
地球物理   22篇
海洋学   2篇
天文学   106篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2013年   18篇
  2012年   5篇
  2011年   10篇
  2010年   16篇
  2009年   3篇
  2008年   22篇
  2007年   15篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   4篇
  1996年   1篇
  1991年   1篇
  1990年   3篇
排序方式: 共有133条查询结果,搜索用时 593 毫秒
31.
单洁  叶景  蔡强伟  林隽 《天文学报》2021,62(2):14-39
磁重联在宇宙的许多动力学现象中都是非常核心的过程.磁流体动力学(MHD)数值模拟是研究磁重联过程以及相应物理图像的一种很有效的手段.通过不同的参数组合,来研究MHD数值模拟中磁雷诺数和空间分辨率对磁重联率、数值耗散和能谱分布的影响.对得到的数据进行分析后,发现磁雷诺数对磁重联率和能谱分布有一定的影响.磁雷诺数越大,磁重联过程进入非线性阶段所需的特征时间越短,磁重联率就越早发生跃升.磁雷诺数Rm对耗散开始发挥作用的Kolmogorov微观尺度lko有明显影响:Rm越大,lko就越小.研究了磁重联过程中包括数值耗散在内的额外耗散对重联过程的影响.结果表明,撕裂模不稳定性开始之前的额外耗散以纯数值耗散为主,撕裂模不稳定性出现之后,额外耗散出现同步跃升,说明不稳定性导致的湍流明显增强了耗散的效果,相当于在局部湍流区引入了超电阻.能谱分析进一步表明,大尺度电流片的lko完全可能出现在宏观的MHD尺度上.  相似文献   
32.
33.
马天鹏  胡立群  陈开云 《海洋学报》2010,32(10):7209-7213
将Gauss复小波变换方法成功地应用于HT-7Tokamak磁流体动力学振荡动态频谱分析中.研究结果表明,这种方法具有较好的时间分辨率和空间分辨率,比较适用做动态频谱分析.对典型放电数据的分析结果表明, m=1模的振荡频率与等离子体压强梯度有着密切的关系.  相似文献   
34.
Using simulations of isotropically forced helical turbulence the contributions to kinetic and magnetic alpha effects are computed. It is shown that for the parameter regimes considered in an earlier publication (Brandenburg & Subramanian 2005), the expressions for isotropic and anisotropic alpha effects give quantitatively similar results. Both kinetic and magnetic alpha effects are proportional to a relaxation time whose value, in units of the turnover time, is shown to be approximately unity and independent of the magnetic Reynolds number. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
35.
Compressional waves in the solar wind propagating over large distances are likely to steepen into shock waves where the increase in the amplitude is balanced by dissipation. Dispersive effects caused by, e.g. Hall currents perpendicular to the ambient magnetic field can influence the generation and propagation of shock waves. In the present study the dispersion is considered weak but in time its importance can grow. When the effect of dispersion is strong enough, it can balance the nonlinear steepening of waves leading to the formation of solitons. The obtained results show that the weak dispersion will alter the amplitude and propagation speed of the shock wave. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
36.
We summarize new and continuing three-dimensional spherical shell simulations of dynamo action by convection allowed to penetrate downward into a tachocline of rotational shear. The inclusion of an imposed tachocline allows us to examine several processes believed to be essential in the operation of the global solar dynamo, including differential rotation, magnetic pumping, and the stretching and organization of fields within the tachocline. In the stably stratified core, our simulations reveal that strong axisymmetric magnetic fields (of ∼ 3000 G strength) can be built, and that those fields generally exhibit a striking antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. In the convection zone above, fluctuating fields dominate over weaker mean fields. New calculations indicate that the tendency toward toroidal fields of antisymmetric parity is relatively insensitive to initial magnetic field configurations; they also reveal that on decade-long timescales, the magnetic fields can briefly enter (and subsequently emerge from) states of symmetric parity.We have not yet observed any overall reversals of the field polarity, nor systematic latitudinal propagation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
37.
The stars of the middle main sequence often have spot‐like chemical structures at their surfaces. We consider diffusion caused by electric currents and argue that such current‐driven diffusion can form chemical inhomogeneities in a plasma. The considered mechanism can contribute to a formation of element spots in Hg‐Mn and Ap‐stars. Due to the Hall effect, diffusion in the presence of electric currents can be accompanied by the propagation of a particular type of magnetohydrodynamic modes in which only the impurity number density oscillates. Such modes exist if the magnetic pressure is much greater than the gas pressure and can be the reason for variations of the abundance peculiarities in stars. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
38.
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that the limit of Rin → 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m = 1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do not depend on the magnetic Prandtl number but this is not true for the corresponding growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm = 1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric current through a container of 10 cm diameter to excite the instability is 3.20 kA. For a rotating container both the critical magnetic field and the related growth times are larger than for the resting column (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
39.
When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos with α linearly depending on position, which makes this dynamo oscillatory, too. In both cases, the critical values of the dynamo number is lowered due to spatio‐temporal nonlocality.When scale separation in space or time is poor, the mean‐field α effect and turbulent diffusivity have to be replaced by integral kernels by which the dependence of the mean electromotive force on the mean magnetic field becomes nonlocal. Earlier work in computing these kernels using the test‐field method is now generalized to the case in which both spatial and temporal scale separations are poor. The approximate form of the kernel for isotropic stationary turbulence is such that it can be treated in a straightforward manner by solving a partial differential equation for the mean electromotive force. The resulting mean‐field equations are solved for oscillatory α –shear dynamos as well as α2 dynamos  相似文献   
40.
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the direction of the large-scale vorticity vector. Thus, the effect produces a latitudinal transport of the large-scale magnetic field in the convective zone wherever the angular velocity has a strong radial gradient. The direction of the drift depends on the sign of helicity and it is defined by the Parker–Yoshimura rule. The analytic calculations are done within the framework of mean-field magnetohydrodynamics using the minimal τ-approximation. We estimate the magnitude of the drift velocity and find that it can be a few m/s near the base of the solar convection zone. The implications of this effect for the solar dynamo are illustrated on the basis of an axisymmetric mean-field dynamo model with a subsurface shear layer. The model shows that near the bottom of the convection zone the helicity–vorticity pumping results mostly from the kinetic helicity contributions. We find that the magnetic helicity contributions to the pumping effect are dominant at the subsurface shear layer. There the magnitude of the drift velocity is found to be a few cm/s. We find that the helicity–vorticity pumping effect can have an influence on the features of the sunspot time–latitude diagram, producing a fast drift of the sunspot activity maximum at the rise phase of the cycle and a slow drift at the decay phase of the cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号