首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1162篇
  免费   195篇
  国内免费   547篇
测绘学   2篇
大气科学   9篇
地球物理   177篇
地质学   1568篇
海洋学   40篇
天文学   8篇
综合类   57篇
自然地理   43篇
  2024年   8篇
  2023年   18篇
  2022年   51篇
  2021年   52篇
  2020年   54篇
  2019年   71篇
  2018年   41篇
  2017年   70篇
  2016年   64篇
  2015年   55篇
  2014年   92篇
  2013年   97篇
  2012年   95篇
  2011年   67篇
  2010年   68篇
  2009年   67篇
  2008年   58篇
  2007年   77篇
  2006年   84篇
  2005年   78篇
  2004年   58篇
  2003年   60篇
  2002年   57篇
  2001年   53篇
  2000年   68篇
  1999年   56篇
  1998年   40篇
  1997年   51篇
  1996年   41篇
  1995年   34篇
  1994年   33篇
  1993年   21篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1984年   1篇
  1976年   1篇
排序方式: 共有1904条查询结果,搜索用时 343 毫秒
11.
Crystallization under confinement conditions is a very important process in geochemistry and geophysics. Computer simulations of fluids in nanometer scale pore spaces can provide a unique microscopic insight into the structure, dynamics and forces arising from the crystallization process. We discuss in this paper molecular dynamics computer simulations of crystallization in pores of nanometer dimensions. The crystallization pressure due to the freezing of a model of Argon in a nanopore is computed using molecular dynamics simulations. We also investigate the influence of pore geometry in determining the dynamics of confined fluids, as well as mass separation in binary mixtures. It turns out that the pore geometry reveals itself as an important variable, leading to 1) new mechanisms for fast diffusion in confined spaces, and 2) accumulation of solute in specific regions inside the pore.  相似文献   
12.
13.
14.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
15.
Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ~1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ~2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.  相似文献   
16.
吐拉苏火山盆地中与金成矿有关的热液富含K^+、Na^+、F、SO4^2-和N2、O2等,是一种主要来源于岩浆.火山的热液,有大气水参于的次生热液.平均均一温度96~158℃,平均盐度0.26%~1.08%,热液活动深度0.26~0.67km,具有低温、低盐度、在地壳浅部活动的基本特征.热液活动生成围绕金矿体由内向外环状展布的黄英岩化、高级泥化、泥化和绿泥石碳酸盐化4个围岩蚀变带.与其有关的金成矿期分为原生沉积富集和次生热液交代蚀变2期,后者包括毒砂黄铁矿化、面状硅化、脉状硅化和绿泥石碳酸盐化4个成矿阶段.金富集成矿主要与黄英岩化蚀变带和面状硅化、脉状硅化2个成矿阶段密切相关.  相似文献   
17.
青藏高原东缘缅萨洼金矿成矿流体地质地球化学特征   总被引:3,自引:0,他引:3  
缅萨洼金矿位于中国中轴构造带的中南段,青藏高原的东缘,赋存于金河-箐河断裂带次级断裂羊坪子韧性剪切带中本文根据对该矿床硫化物流体包裹体的氦氩同位素、硫化物的硫同位素以及与硫化物共生的石英的流体包裹体特征、成分以及氢氧同位素组成的测定,讨论了缅萨洼金矿的成矿流体来源及其矿床成因。结果显示,该矿床硫化物流体包裹体中的3He/4He变化较小,为0.69-0.82,显示了地幔流体参与成矿作用的可能性。而4He的含量变化范围较大,一般在2.19-10.62×10-6cm3STP/g(方铅矿除外)与3He/4He相比,40Ar/36Ar的比值则变化较小,一般为251-509。而硫化物的δ34S同位素变化范围在-1.8-2.2‰,平均值为0.5‰,说明硫的地幔来源。与硫化物共生的石英的流体包裹体的类型主要有富液相的盐水溶液包裹体、富气相的盐水溶液包裹体、三相CO2包裹体、纯液相CO2包裹体以及有机流体包裹体。成矿流体的氢氧同位素则显示成矿流体来源于岩浆水(或地幔流体)与大气降水的混合流体,本文认为,缅萨洼金矿的成矿流体为地幔流体与大气降水的混合流体,是渐新世印度大陆与亚洲大陆碰撞之后,该地区大规模走滑与剪切作用过程中,局部伸展作用的产物。  相似文献   
18.
超临界流体中MoO3与WO3溶解度实验探讨   总被引:1,自引:1,他引:1  
超临界地质流体以其独特的性质对金属成矿元素具有超强的萃取、层析和搬运能力,在热液矿床成矿机制研究中对揭示成矿物质的源、流和汇起着特殊和重要作用。本文利用分析纯H2MoO4在高温下脱水制备了MoO3(白色斜方晶系),在冷封式高压釜中实验测定了417℃超临界条件下,MoO3在纯水中的溶解度分别为7.3(29MPa)、14.2(45MPa)、21.6(55MPa)、27.7(78MPa)、32.5(100MPa)、和34.2(150MPa)mmol/l,热液中钼的存在形式为H2MoO4。依据前人的实验方案,补充测定了WO3在4.0%NaCl水溶液中于450%条件下的溶解度,其值分别为27.51(50MPa)和30.52(100MPa)mmol/l。结合前人研究结果发现,MoO3、WO3的溶解度在临界区域内具有超临界现象,在超临界条件下其溶解度与石英的超临界溶解度行为基本相似,表现为溶解度随体系温度和压力的升高而增大,这对揭示岩浆热液型和石英脉型钨、钼矿床的形成机制具有重要指导作用。  相似文献   
19.
中酸性岩浆体系成矿流体及微量元素地球化学特征   总被引:5,自引:0,他引:5       下载免费PDF全文
从流体成矿作用角度出发,与酸性岩浆体系有关的成矿流体可以分为:酸性岩浆硅酸盐熔融体,岩浆一热液过渡阶段硅酸盐熔融体及其分异的流体,酸性岩浆熔体分异形成的热水成矿溶液。酸性岩浆体系主要提供热源和部分矿质,其提供的热源驱动地下水淋滤、萃取围岩中的成矿物质形成地下水热液成矿流体。变质岩混合岩化形成花岗质岩浆过程中所形成的混合岩化成矿流体。在此基础上,讨论了上述不同成矿流体的微量元素地球化学特征及其对成矿的控制作用。  相似文献   
20.
对新疆准噶尔地区浅成低温热液型金矿床中富硫型的阔尔真阔腊金矿、贫硫型的石英滩金矿进行了流依包裹体的均一温度、爆裂温度、包裹体气液相成分、H、O 同位素、矿体围岩及脉石英包裹体 C 同位素、矿体中黄铁矿等 S、Ph 同位素等系统地进行了研究,综合研究表明,本区该类型金矿成矿流体一般温度低、盐度低,来源主要为循环的大气水、矿石中黄铁矿的 S、Pb 同位素均为深源,暗示金的深部来源:矿体石英包裹体中 CO_2的δ~(13)C 为低于-10‰的有机碳,反映了本区年轻的富含有机质的沉积地层参与了金的成矿。此外,本文首次提出了富硫型阔尔真阔腊金矿床成矿流体中有侵入岩浆热液参与,深部有多金属成矿远景;贫硫型石英滩金矿没有侵入岩浆热液的参与,成矿仅与火山古热液活动有关,其成矿较单一。此外,阔尔真阔腊金矿中低温流体活动较强,金矿化也较强:石英滩金矿低温流体活动相对较弱,金矿化也较弱,也体现了该类型金矿床低温流体活动的越强烈,金矿化越强的规律。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号