全文获取类型
收费全文 | 1566篇 |
免费 | 200篇 |
国内免费 | 326篇 |
专业分类
测绘学 | 529篇 |
大气科学 | 215篇 |
地球物理 | 269篇 |
地质学 | 499篇 |
海洋学 | 138篇 |
天文学 | 14篇 |
综合类 | 178篇 |
自然地理 | 250篇 |
出版年
2024年 | 56篇 |
2023年 | 119篇 |
2022年 | 205篇 |
2021年 | 228篇 |
2020年 | 196篇 |
2019年 | 155篇 |
2018年 | 88篇 |
2017年 | 105篇 |
2016年 | 79篇 |
2015年 | 61篇 |
2014年 | 59篇 |
2013年 | 102篇 |
2012年 | 120篇 |
2011年 | 74篇 |
2010年 | 54篇 |
2009年 | 53篇 |
2008年 | 47篇 |
2007年 | 54篇 |
2006年 | 49篇 |
2005年 | 38篇 |
2004年 | 22篇 |
2003年 | 21篇 |
2002年 | 6篇 |
2001年 | 22篇 |
2000年 | 10篇 |
1999年 | 15篇 |
1998年 | 9篇 |
1997年 | 10篇 |
1996年 | 8篇 |
1995年 | 9篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1991年 | 5篇 |
1989年 | 2篇 |
1985年 | 1篇 |
1984年 | 2篇 |
排序方式: 共有2092条查询结果,搜索用时 15 毫秒
91.
A framework for the generation of bridge-specific fragility curves utilizing the capabilities of machine learning and stripe-based approach is presented in this paper. The proposed methodology using random forests helps to generate or update fragility curves for a new set of input parameters with less computational effort and expensive resimulation. The methodology does not place any assumptions on the demand model of various components and helps to identify the relative importance of each uncertain variable in their seismic demand model. The methodology is demonstrated through the case study of a multispan concrete bridge class in California. Geometric, material, and structural uncertainties are accounted for in the generation of bridge numerical models and their fragility curves. It is also noted that the traditional lognormality assumption on the demand model leads to unrealistic fragility estimates. Fragility results obtained by the proposed methodology can be deployed in a risk assessment platform such as HAZUS for regional loss estimation. 相似文献
92.
随着大数据和机器学习的成熟和推广应用,人工神经网络在地球物理测井预测储层参数中得到重视.本文引入迁移学习进行测井储层参数预测,以孔隙度预测神经网络模型和孔隙度含水饱和度联合预测神经网络模型为基础模型,分别以渗透率及含水饱和度预测作为目标任务进行迁移学习,以提升储层参数预测效果和效率.文中详细阐述了基于迁移学习的测井储层参数预测方法,并使用64口井的测井数据进行储层参数预测效果分析.结果表明,使用迁移学习后,渗透率模型预测效果最高可以提升58.3%;含水饱和度模型预测效果最高可以提升近40%,且最大可以节省60%的计算资源;以孔隙度预测模型为基础模型时更适合使用参数冻结的训练方式,以孔隙度含水饱和度联合预测模型为基础模型时更适合使用参数微调的训练方式.
相似文献93.
Chun Jiang Xueli Wei Xiaofeng Cui Dexiang You Earthquake Administration of Tianjin Municipality Tianjin China Tianjin University of Technology Tianjin China 《地震学报(英文版)》2009,(3):315-320
This paper introduces the method of support vector machine (SVM) into the field of synthetic earthquake pre-diction, which is a non-linear and complex seismogenic system. As an example, we apply this method to predict the largest annual magnitude for the North China area (30°E-42°E, 108°N-125°N) and the capital region (38°E-41.5°E, 114°N-120°N) on the basis of seismicity parameters and observed precursory data. The corresponding prediction rates for the North China area and the capital region are 64.1% and ... 相似文献
94.
Data-based models, namely artificial neural network (ANN), support vector machine (SVM), genetic programming (GP) and extreme learning machine (ELM), were developed to approximate three-dimensional, density-dependent flow and transport processes in a coastal aquifer. A simulation model, SEAWAT, was used to generate data required for the training and testing of the data-based models. Statistical analysis of the simulation results obtained by the four models show that the data-based models could simulate the complex salt water intrusion process successfully. The selected models were also compared based on their computational ability, and the results show that the ELM is the fastest technique, taking just 0.5 s to simulate the dataset; however, the SVM is the most accurate, with a Nash-Sutcliffe efficiency (NSE) ≥ 0.95 and correlation coefficient R ≥ 0.92 for all the wells. The root mean square error (RMSE) for the SVM is also significantly less, ranging from 12.28 to 77.61 mg/L. 相似文献
95.
Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting 总被引:1,自引:0,他引:1
This paper describes the identification of effective typhoon characteristics and the development of a new type of hourly reservoir inflow forecasting model with the effective typhoon characteristics. Firstly, a comparison of support vector machines (SVMs), which is a novel kind of neural networks (NNs), and back-propagation networks (BPNs) is made to select an appropriate NN-based model. The results show that SVM-based models are more appropriate than BPN-based models because of their higher accuracy and much higher efficiency. In addition, effective typhoon characteristics for improving forecasting performance are identified from all the collected typhoon information. Then the effective typhoon characteristics (the position of the typhoon and the distance between the typhoon center and the reservoir) are added to the proposed SVM-based models. Next, a performance comparison of models with and without effective typhoon characteristics is conducted to clearly highlight the effects of effective typhoon characteristics on hourly reservoir inflow forecasting. To reach a just conclusion, the performance is evaluated by cross validation, and the improvement in performance due to the addition of effective typhoon characteristics is tested by paired comparison t-tests at the 5% significance level. The results confirm that effective typhoon characteristics do improve the forecasting performance and the improvement increases with increasing lead-time, especially when the rainfall data are not available. For four- to six-hour ahead forecasts, the improvement due to the addition of effective typhoon characteristics increases from 3% to 18% and from 10% to 113% for Categories I (rainfall data are available) and II (rainfall data are not available), respectively. In conclusion, effective typhoon characteristics are recommended as key inputs for reservoir inflow forecasting during typhoons. The proposed SVM-based models with effective typhoon characteristics are expected to provide more accurate forecasts than BPN-based models. The proposed modeling technique is also expected to be useful to support reservoir operation systems and other disaster warning systems. 相似文献
96.
AbstractThe quantification of the sediment carrying capacity of a river is a difficult task that has received much attention. For sand-bed rivers especially, several sediment transport functions have appeared in the literature based on various concepts and approaches; however, since they present a significant discrepancy in their results, none of them has become universally accepted. This paper employs three machine learning techniques, namely artificial neural networks, symbolic regression based on genetic programming and an adaptive-network-based fuzzy inference system, for the derivation of sediment transport formulae for sand-bed rivers from field and laboratory flume data. For the determination of the input parameters, some of the most prominent fundamental approaches that govern the phenomenon, such as shear stress, stream power and unit stream power, are utilized and a comparison of their efficacy is provided. The results obtained from the machine learning techniques are superior to those of the commonly-used sediment transport formulae and it is shown that each of the input combinations tested has its own merit, as they produce similarly good results with respect to the data-driven technique employed.
Editor Z.W. Kundzewicz 相似文献
97.
Deepti Joshi Andre St-Hilaire Taha B. M. J. Ouarda Anik Daigle Nathalie Thiemonge 《水文科学杂志》2013,58(11):1996-2010
ABSTRACTThis work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed 相似文献
98.
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models. 相似文献
99.
我国建立了包含海量数据的高质量的勘查地球化学数据库,为矿产勘查、环境评价和地质调查等提供了重要的数据支撑。如何高效处理勘查地球化学数据,并从中发掘和识别深层次信息一直是勘查地球化学学科研究的热点和前沿领域。本文在系统调研国内外学者过去十年发表的论著基础上,对勘查地球化学数据处理方法进行分析与对比,从勘查地球化学数据库建设、地球化学异常识别及其不确定性评价等方面概述了我国近十年来在该领域取得的主要研究进展,包括:(1)分形与多重分形模型由于考虑了地球化学空间模式的复杂性和尺度不变性,在全球范围内得到极大的发展和推广,我国学者引领了基于分形与多重分形的勘查地球化学数据处理;(2)机器学习和大数据思维开始在该领域启蒙,并迅速得到关注,正在成为研究热点和前沿领域,我国学者率先开展基于机器学习算法的勘查地球化学大数据挖掘研究;(3)我国学者需要进一步加强勘查地球化学数据缺失值处理以及成分数据闭合效应研究。今后该领域应进一步加强对弱缓地球化学异常识别、异常不确定性评价以及异常识别与其形成机理相结合等方面的研究。 相似文献
100.
The selection of a suitable discretization method(DM)to discretize spatially continuous variables(SCVs)is critical in ML-based natural hazard susceptibility assessment.However,few studies start to consider the influence due to the selected DMs and how to efficiently select a suitable DM for each SCV.These issues were well addressed in this study.The information loss rate(ILR),an index based on the informa-tion entropy,seems can be used to select optimal DM for each SCV.However,the ILR fails to show the actual influence of discretization because such index only considers the total amount of information of the discretized variables departing from the original SCV.Facing this issue,we propose an index,infor-mation change rate(ICR),that focuses on the changed amount of information due to the discretization based on each cell,enabling the identification of the optimal DM.We develop a case study with Random Forest(training/testing ratio of 7:3)to assess flood susceptibility in Wanan County,China.The area under the curve-based and susceptibility maps-based approaches were presented to compare the ILR and ICR.The results show the ICR-based optimal DMs are more rational than the ILR-based ones in both cases.Moreover,we observed the ILR values are unnaturally small(<1%),whereas the ICR values are obviously more in line with general recognition(usually 10%-30%).The above results all demonstrate the superiority of the ICR.We consider this study fills up the existing research gaps,improving the ML-based natural hazard susceptibility assessments. 相似文献