首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   32篇
  国内免费   6篇
测绘学   11篇
大气科学   11篇
地球物理   159篇
地质学   27篇
海洋学   26篇
天文学   34篇
综合类   4篇
自然地理   39篇
  2022年   2篇
  2021年   12篇
  2020年   19篇
  2019年   11篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   10篇
  2014年   9篇
  2013年   34篇
  2012年   4篇
  2011年   16篇
  2010年   3篇
  2009年   11篇
  2008年   22篇
  2007年   15篇
  2006年   18篇
  2005年   15篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   9篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
51.
Stream burning is a common flow enforcement technique used to correct surface drainage patterns derived from digital elevation models (DEM). The technique involves adjusting the elevations of grid cells that are coincident with the features of a vector hydrography layer. This paper focuses on the problematic issues with common stream burning practices, particularly the topological errors resulting from the mismatched scales of the hydrography and DEM data sets. A novel alternative stream burning method is described and tested using five DEMs of varying resolutions (1 to 30 arc‐seconds) for an extensive area of southwestern Ontario, Canada. This TopologicalBreachBurn method uses total upstream channel length (TUCL) to prune the vector hydrography layer to a level of detail that matches the raster DEM grid resolution. Network pruning reduces the occurrence of erroneous stream piracy caused by the rasterization of multiple stream links to the same DEM grid cell. The algorithm also restricts flow within individual stream reaches, further reducing erroneous stream piracy. In situations where two vector stream features occupy the same grid cell, the new tool ensures that the larger stream, designated by higher TUCL, is given priority. TUCL‐based priority minimizes the impact of the topological errors that occur during the stream rasterization process on modeled regional drainage patterns. The test data demonstrated that TopologicalBreachBurn produces highly accurate and scale‐insensitive drainage patterns and watershed boundaries. The drainage divides of four large watersheds within the study region that were delineated from the TopologicalBreachBurn‐processed DEMs were found to be highly accurate when compared with the official watershed boundaries, even at the coarsest grid resolutions, with Kappa index of agreement values ranging from 0.952 to 0.921. The corresponding Kappa coefficient values for a traditional stream burning method (FillBurn) ranged from 0.953 to 0.490, demonstrating a significant decrease in mapping accuracy at coarser DEM grid resolutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
53.
Juvenile north-temperate and Arctic fishes are faced with trade-offs between energy allocation to growth and energy storage (primarily lipids) prior to over-wintering. We determined classical morphometric (fork length, body weight and condition factor) and biochemical (whole body triglycerides, muscle RNA/DNA ratio, muscle proteins) measures of growth and condition in individual young-of-the-year (YOY) Arctic grayling (Thymallus arcticus). Grayling were collected just prior to over-wintering in late August (approximately 50 days after swim-up) from two natural streams and five locations within a 3.4 km long artificial stream constructed as a fish habitat compensation project and diversion channel for the diamond mining industry in Northwest Territories, Canada (64°45′N). Fork lengths, body weights and whole body triglyceride levels in grayling collected from all sites along the artificial stream were significantly lower than fish collected from one of the natural streams. Condition factor (weight-at-length) was not different among grayling collected from natural and artificial streams. Muscle proteins were lower in grayling collected from four sites along the artificial stream compared to the natural streams. In contrast, muscle RNA/DNA ratios were greater in grayling collected from two sites in the artificial stream compared to natural streams. There were no consistent differences in any variable among grayling collected at the five artificial stream sites or among grayling collected from the two natural streams. The higher RNA/DNA ratios and lower fork lengths, whole body triglycerides and muscle proteins in grayling inhabiting the artificial stream are consistent with energy still being primarily allocated to growth in these fish at this late stage of summer. Individuals that are both larger and possess greater energy storage in the form of triglycerides are more likely to survive the long over-wintering period at this latitude. Our results suggest that YOY grayling using the artificial stream as nursery habitat will likely face increased over-winter mortality, thus raising concerns over the use of fish presence, spawning and rearing as criteria for the initial success of artificial streams as habitat compensation measures in Arctic tundra regions. Further research is needed to determine the potential consequences of reduced size and energy storage in juvenile fishes in order to assess the viability of stream fish habitat compensation and restoration projects associated with industrial development in Arctic tundra regions.  相似文献   
54.
In this paper, a method to predict the equilibrium bed slope in natural streams based on the incipient motion criterion is proposed. The method is based on the criterion suggested by Gessler to simulate the grain size distribution of the armour coat using the concept of critical shear stress of a sediment mixture. In particular, a different expression of the probability for a single particle size to be part of the armour coat is firstly proposed; then, a simple two‐steps criterion is suggested to estimate the safety factor required by the proposed approach. The method is applied in three different Italian regions (Calabria, Basilicata, and Tuscany) and required several field campaigns involving the survey of 251 stream reaches upstream of grade‐control structures. The area including five Calabrian streams is firstly used to test the suitability of the two‐steps approach. In this area, considering the detailed information about the particle size of bed material, the effect of using a simplified grain size distribution for each torrent is also checked. The method is then applied within the two additional areas (Basilicata and Tuscany) in order to check the geographic influence on the prediction of the stable longitudinal profile. A comparison between measured and estimated values of the equilibrium bed slope showed a good agreement for the Calabrian streams, where the number of the investigated stream reaches is greater, and satisfactory results for the torrents located in Basilicata and Tuscany where the field data set is more limited. The overall results encourage the extension of the proposed method to additional field data and suggest the use of this approach by hydraulic designers in order to stabilize the longitudinal profile of natural streams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
55.
急流在梅雨期持续暴雨过程中的作用   总被引:11,自引:6,他引:5  
本文利用实况资料和客观分析资料,对造成江苏2010年7月9-14日的暴雨过程中高低空急流特点、配置及对暴雨的影响进行了分析.结果表明:高空动量下传,引起低空扰动加强,从而使得低空急流加强和维持.低层高能的平流为江苏境内暴雨和大暴雨的产生提供了充足的能量.低空西南风急流是暴雨产生的重要因子,仅在700 hPa出现强劲西南风急流,就可以导致江苏境内的强降水发生.分析还表明:阶段性暴雨起始的时候,暴雨落区上方都出现了负散度和正散度相互交错的情况,直至6h后才有高空辐散低空辐合的典型形势.高低层急流配置和次级环流的维持为暴雨的持续提供了有利条件.  相似文献   
56.
57.
58.
59.
Mountainous headwater streams represent a substantial proportion of the global stream network. These small streams may flow episodically, seasonally, or perennially, providing diverse values and services. Given their broad importance and growing pressures on terrestrial and aquatic resources, we must improve our understanding of the drivers of flow permanence to facilitate informed land and water management decisions. We used field observations from >10 cross-sections in each of 101 non-fish bearing, headwater streams across four geomorphic provinces in Northern California to quantify flow permanence and network connectivity during the summer low flow period in 2018. At each stream cross-section, we noted the presence or absence of streamflow and used this information to classify streams as perennial (continuous streamflow in all cross-sections) or non-perennial and connected (surface water in the most downstream cross-section) or disconnected. At each cross-section, we also quantified channel size (width and depth) and grain size. We coupled field observations with geospatial data of catchment physiography, hydrology, and climate in random forest models to investigate controls of flow permanence and network connectivity. Potential drivers of flow permanence or network connectivity included in our models were channel geometry, grain size, slope, aspect, elevation, annual and seasonal precipitation, air temperature, and topographic wetness index. We found more perennial streams in the Klamath Mountains and Sierra Nevada than in the Cascades and N. Coast regions. Streams in the Klamath were the most connected followed by streams in the N. Coast, Sierra Nevada, and Cascades. The most important variables for predicting flow permanence were channel grain size, winter 2018 precipitation, and drainage area. Comparatively, the most important variables for predicting network connectivity were winter and spring 2018 precipitation, grain size, and bankfull depth. Our study illustrated the complexity of the processes that drive flow permanence and highlighted the uncertainty in projecting the precense of water in streams across diverse regions.  相似文献   
60.
Abandoned mining operations continue to severely degrade many ecosystems worldwide by releasing acidic water and/or heavy metals into surface and groundwater. Contaminant concentrations in affected streams vary with discharge in patterns that reflect both geochemical reactions and variable mixing of contaminated and non-contaminated waters. However, controls on concentration-discharge (C-Q) patterns remain unclear, particularly for constituents that experience changing solubility across redox and pH gradients. Understanding the C-Q behaviour of contaminants aids in predicting both downstream transport and effects on aquatic life under variable flow. Here, we examined the C-Q behaviours of non-reactive (Na, K, Ca, Mg, Cl) and reactive (Fe, Mn, Al, H+, SO42−) solutes in a stream contaminated with acid mine drainage in northeastern Ohio, USA. Concentration-discharge patterns at the watershed outlet primarily reflected mixing of contaminated baseflow with intermittent inputs of high pH water draining from a passive limestone treatment system into the stream. The treatment system acted as an ephemeral tributary that mitigated contamination in the stream by diluting solutes, raising pH, and driving metal precipitation, but only when flow was present during wet seasons. Consequently, AMD-derived reactive solutes (H+, Fe, Mn, Al) decreased with increasing stream discharge while relatively conservative solutes (e.g., Ca, Mg, K, Na) decreased only slightly or were chemostatic. This study highlights both the unique C-Q patterns of reactive solutes when compared to those of non-reactive solutes and the potential for intermittent streams to control C-Q behaviour in headwater catchments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号