首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7388篇
  免费   2236篇
  国内免费   1471篇
测绘学   168篇
大气科学   2578篇
地球物理   4089篇
地质学   2600篇
海洋学   492篇
天文学   395篇
综合类   195篇
自然地理   578篇
  2024年   32篇
  2023年   55篇
  2022年   103篇
  2021年   200篇
  2020年   212篇
  2019年   403篇
  2018年   577篇
  2017年   600篇
  2016年   630篇
  2015年   593篇
  2014年   660篇
  2013年   973篇
  2012年   679篇
  2011年   616篇
  2010年   532篇
  2009年   445篇
  2008年   508篇
  2007年   471篇
  2006年   426篇
  2005年   417篇
  2004年   356篇
  2003年   307篇
  2002年   258篇
  2001年   250篇
  2000年   241篇
  1999年   112篇
  1998年   85篇
  1997年   82篇
  1996年   47篇
  1995年   37篇
  1994年   52篇
  1993年   32篇
  1992年   27篇
  1991年   38篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:
63.
An investigation is made to present analytical solutions provided by a Winkler model approach for the analysis of single piles and pile groups subjected to vertical and lateral loads in nonhomogeneous soils. The load transfer parameter of a single pile in nonhomogeneous soils is derived from the displacement influence factor obtained from Mindlin's solution for an elastic continuum analysis, without using the conventional form of the load transfer parameter adopting the maximum radius of the influence of the pile proposed by Randolph and Wroth. The modulus of the subgrade reaction along the pile in nonhomogeneous soils is expressed by using the displacement influence factor related to Mindlin's equation for an elastic continuum analysis to combine the elastic continuum approach with the subgrade reaction approach. The relationship between settlement and vertical load for a single pile in nonhomogeneous soils is obtained by using the recurrence equation for each layer. Using the modulus of the subgrade reaction represented by the displacement influence factor related to Mindlin's solution for the lateral load, the relationship between horizontal displacement, rotation, moment, and shear force for a single pile subjected to lateral loads in nonhomogeneous soils is available in the form of the recurrence equation. The comparison of the results calculated by the present method for single piles and pile groups in nonhomogeneous soils has shown good agreement with those obtained from the more rigorous finite element and boundary element methods. It is found that the present procedure gives a good prediction on the behavior of piles in nonhomogeneous soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
64.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   
65.
Gold and copper concentrations were determined in natural pyrite by near‐infrared femtosecond LA‐ICP‐QMS, using both sulfide reference materials (pyrrhotite Po‐726 and in‐house natural chalcopyrite Cpy‐RM) and NIST SRM 610 as external calibrators. Firstly, using NIST SRM 610 as the external calibrator, we calculated the Au concentration in Po‐726 and the Cu concentration in Cpy‐RM. The calculated concentration averages for Au and Cu were similar to the values published for Po‐726 and Cpy‐RM, respectively. Secondly, we calculated Au and Cu concentrations taking NIST SRM 610 as an unknown sample and using Po‐726 and Cpy‐RM as external calibrators. Again, the average values obtained closely reflected the preferred concentrations for NIST SRM 610. Finally, we calculated Au and Cu concentrations in natural pyrite using sulfide and silicate reference materials as external calibrators. In both cases, calculated concentrations were very similar, independent of the external calibrator used. The aforementioned data, plus the fact that we obtained very small differences in relative sensitivity values (percentage differences are between 5% and 17% for 57Fe, 63Cu and 197Au) on analyses of silicate and sulfide RMs, indicate that there were no matrix effects related to the differences in material composition. Thus, it is possible to determine Au and Cu in natural sulfides using NIST silicate glasses as an external calibrator.  相似文献   
66.
The Late Permian (Wuchiapingian) Alcotas Formation in the SE Iberian Ranges consists of one red alluvial succession where abundant soil profiles developed. Detailed petrographical and sedimentological studies in seven sections of the Alcotas Formation allow six different types of palaeosols, with distinctive characteristics and different palaeogeographical distribution, to be distinguished throughout the South‐eastern Iberian Basin. These characteristics are, in turn, related to topographic, climatic and tectonic controls. The vertical distribution of the palaeosols is used to differentiate the formation in three parts from bottom to top showing both drastic and gradual vertical upwards palaeoenvironmental changes in the sections. Reconstruction of palaeoenvironmental conditions based on palaeosols provides evidence for understanding the events that occurred during the Late Permian, some few millions of years before the well‐known Permian‐Triassic global crisis.  相似文献   
67.
Rare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American REE have come from a carbonatite deposit at Mountain Pass, California, and most of the world’s REE came from this source between 1965 and 1995. After 1998, Mountain Pass REE sales declined substantially due to competition from China and to environmental constraints. REE are presently not mined at Mountain Pass, and shipments were made from stockpiles in recent years. Chevron Mining, however, restarted extraction of selected REE at Mountain Pass in 2007. In 1987, Mountain Pass reserves were calculated at 29 Mt of ore with 8.9% rare earth oxide based on a 5% cut‐off grade. Current reserves are in excess of 20 Mt at similar grade. The ore mineral is bastnasite, and the ore has high light REE/heavy REE (LREE/HREE). The carbonatite is a moderately dipping, tabular 1.4‐Ga intrusive body associated with ultrapotassic alkaline plutons of similar age. The chemistry and ultrapotassic alkaline association of the Mountain Pass deposit suggest a different source than that of most other carbonatites. Elsewhere in the western USA, carbonatites have been proposed as possible REE sources. Large but low‐grade LREE resources are in carbonatite in Colorado and Wyoming. Carbonatite complexes in Canada contain only minor REE resources. Other types of hard‐rock REE deposits in the USA include small iron‐REE deposits in Missouri and New York, and vein deposits in Idaho. Phosphorite and fluorite deposits in the USA also contain minor REE resources. The most recently discovered REE deposit in North America is the Hoidas Lake vein deposit, Saskatchewan, a small but incompletely evaluated resource. Neogene North American placer monazite resources, both marine and continental, are small or in environmentally sensitive areas, and thus unlikely to be mined. Paleoplacer deposits also contain minor resources. Possible future uranium mining of Precambrian conglomerates in the Elliott Lake–Blind River district, Canada, could yield by‐product HREE and Y. REE deposits occur in peralkaline syenitic and granitic rocks in several places in North America. These deposits are typically enriched in HREE, Y, and Zr. Some also have associated Be, Nb, and Ta. The largest such deposits are at Thor Lake and Strange Lake in Canada. A eudialyte syenite deposit at Pajarito Mountain in New Mexico is also probably large, but of lower grade. Similar deposits occur at Kipawa Lake and Lackner Lake in Canada. Future uses of some REE commodities are expected to increase, and growth is likely for REE in new technologies. World reserves, however, are probably sufficient to meet international demand for most REE commodities well into the 21st century. Recent experience shows that Chinese producers are capable of large amounts of REE production, keeping prices low. Most refined REE prices are now at approximately 50% of the 1980s price levels, but there has been recent upward price movement for some REE compounds following Chinese restriction of exports. Because of its grade, size, and relatively simple metallurgy, the Mountain Pass deposit remains North America’s best source of LREE. The future of REE production at Mountain Pass is mostly dependent on REE price levels and on domestic REE marketing potential. The development of new REE deposits in North America is unlikely in the near future. Undeveloped deposits with the most potential are probably large, low‐grade deposits in peralkaline igneous rocks. Competition with established Chinese HREE and Y sources and a developing Australian deposit will be a factor.  相似文献   
68.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   
69.
Biotite igneous ages and well‐defined isochron ages of plutons from the composite Blue Tier Batholith and the Coles Bay area in northeastern Tasmania range from 395 to 370 Ma. The older limit of this range, for the George River granodiorite, is considerably older than any age previously recorded for NE Tasmania. The ages of the youngest plutons (Mt Paris and Anchor granites), which host cassiterite ores, record pervasive hydrothermal alteration events. The initial 87Sr/80Sr ratios of the granitoids range from 0.7061 to 0.7136 and suggest different protolith compositions, consistent with mineralogical and geochemical characteristics of each pluton. The S‐type garnetbiotite granites (Ansons Bay and Booby alia granites) have initial ratios greater than 0.7119, indicative of enriched, high Rb/Sr ratio, crustal source‐rocks of Proterozoic age (1700–800 Ma). The S‐type biotite granites (Poimena and Pearson granites) have relatively high initial 87Sr/86Sr ratios (0.7070, 0.7105) but overlap with those of the I‐type granodiorites (George River, Scamander Tier, Pyengana and Coles Bay granodiorites) which are in the range of 0.7061 to 0.7073. The initial ratios of the enriched altered plutons are poorly constrained, and on both hand‐specimen and thin‐section scales, reveal open‐system Sr isotopic patterns.

Isochron ages for the arenite‐lutite and lutite sedimentary associations of the Mathinna Beds, which are intruded by the granitoids, reflect an approach to Sr isotopic equilibrium during regional metamorphism. The metamorphic age (401 ± 7 Ma) of the early Pragian arenite‐lutite association indicates a relatively small time interval between deposition, regional metamorphism and granitoid intrusion. The isotopic age for the lutite sedimentary association (423 ± 22 Ma) is tentatively correlated with a Benambran‐age burial metamorphic event that has not previously been recorded in Tasmania.  相似文献   
70.
In the Upper Murray Valley, Victoria, Late Silurian, high‐Si igneous rocks, which are closely associated with alkalic, basaltic dykes, were emplaced at high crustal levels following the peak of the Benambran Orogeny, which deformed and metamorphosed the Wagga Zone in Late Ordovician‐Early Silurian times. These rocks, which are informally termed ‘the Upper Murray high‐Si magmatic suite’, include leucogranites, rhyolite dykes and flows, and ash‐flow tuffs characterised by the following features. They are transitional from mildly peraluminous to mildly metaluminous; they represent relatively anhydrous magmas, in which halides were important volatile constituents; they have high Si, total alkalies, Rb, Th, U, Nb, Sn and heavy rare earth elements; and they are relatively repleted in Mg, Ca, Sr, Eu, V, Cr and Ni. In these respects and in their post‐orogenic setting and close association with alkalic basalts, they resemble many post‐orogenic granitoids from elsewhere. Such granitoids appear to have formed as partial melts during crustal extension following major episodes of deformation and high‐Si magmatism. A residual granulitic crust, from which an earlier generation of granitoid magmas had been extracted, is argued to be the source rock‐type for these post‐orogenic magmas. Tectonic extension, affecting such a crust, was accompanied by deep fracturing and basaltic vol‐canism. Mantle‐derived, CO2‐ and halide‐rich fluids moved into the residual crust, causing widespread metasomatism, and emplacement of basaltic magma caused temperatures to rise until melting took place and a second group of magmas was produced. This model explains most aspects of the trace and major element chemistry of post‐orogenic, high‐Si igneous rocks and, for the Upper Murray high‐Si suite it also provides an explanation for variations in trace elements and isotopic characteristics. Other processes, such as crystal fractionation, magma mixing, thermogravi‐tational diffusion, and separation and loss of a volatile phase, provide explanations for variations within individual units of the suite, but they do not explain overall variations or the highly fractionated nature of the suite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号