首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   31篇
  国内免费   17篇
测绘学   1篇
大气科学   8篇
地球物理   166篇
地质学   35篇
海洋学   24篇
综合类   8篇
自然地理   63篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   15篇
  2020年   19篇
  2019年   13篇
  2018年   4篇
  2017年   19篇
  2016年   13篇
  2015年   9篇
  2014年   16篇
  2013年   23篇
  2012年   9篇
  2011年   12篇
  2010年   12篇
  2009年   17篇
  2008年   21篇
  2007年   22篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有305条查询结果,搜索用时 0 毫秒
41.
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies.  相似文献   
42.
江西泰和县森林生态系统水源涵养功能评估   总被引:8,自引:0,他引:8  
森林生态系统综合水源涵养能力是林冠层、枯落物层和土壤层蓄水能力的总和。本文根据江西泰和县 2003 年森林资源二类调查,结合文献收集,从3 个作用层评估了泰和县森林生态系统的水源涵养量及其空间分布格局,比较了不同森林类型、林龄、海拔、坡度下的林冠降雨截留能力,枯落物最大持水量和土壤蓄水能力。结果表明,林冠层平均截留率为16.31%,枯落物层持水率为2.14%,土壤层蓄水率为81.55%,3 个层次总截留和蓄水量为1.41 亿m3。各种森林类型水源涵养量由大到小依次为:杉木林>马尾松林>湿地松林>阔叶林>毛竹林>灌木林> 混交林>经济林。幼林龄、中林龄、近熟林、成熟林和过熟林水源涵养贡献率分别为17.58%、65.39%、14.18%、 2.48%和0.37%,涵养水源能力随林龄的增加而增加。空间上,泰和县森林生态系统的综合水源涵养力表现出从东西两侧向中部递减的分布。不同立地条件下林分的合理经营与管理对于整个森林生态系统水源涵养功能的发挥具有重要的作用。  相似文献   
43.
森林冠层对降雪的截留和冠层截留雪的蒸发/升华、散落释放、融化滴落等过程显著影响了北方森林区域的水文循环,开展森林冠层对降雪截留过程影响的研究对于季节性积雪森林区域的气候变化、森林经营、森林火灾以及植被演替具有重要的科学意义。对当前的森林冠层影响降雪截留过程的观测方法和理论机制进行了深入探讨和总结,并针对现有研究中缺乏林分尺度和水平过程的研究等问题,提出了引入遥感技术等先进的研究方法以及开展多尺度、多过程和多因素的交叉研究是今后研究中的重点方向。  相似文献   
44.
Abstract

The dynamic properties of rainfall interception were investigated at three growth stages in Chinese fir plantations. The results showed that the annual interception ratio was significantly higher in mature stands than in young stands. For a storm event, interception rainfall amount increased with increasing rainfall, but interception ratio decreased. In contrast to dry season conditions, the interception amount was high in the wet seasons, while the interception ratio was low. The rates of change in interception ratio were extremely rapid in small rainfall events. There was little stemflow in Chinese fir forests due to the pyramid-shaped crowns and thick rough bark of the trees. The power model was suitable to describe the interception process for an individual rainfall event for stands of any age. Our results indicate that the interception process varied for stands of different ages in Chinese fir plantations due to contrasting canopy structures.  相似文献   
45.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   
46.
In recent years, Moso bamboo (Phyllostachys pubescens) forests have rapidly expanded in Japan by replacing surrounding coniferous and/or broadleaved forests. To evaluate the change in water yield from forested areas because of this replacement, it is necessary to examine evapotranspiration for Moso bamboo forests. However, canopy interception loss, one of the major components of evapotranspiration in forested areas, has been observed in only two Moso bamboo forests in Japan with relatively high stem density (~7000 stems/ha). There are, in fact, many Moso bamboo forests with much lower stem density. Thus, we made precipitation (Pr), throughfall (Tf) and stemflow (Sf) observations for 1 year in a Moso bamboo forest with stem density of 3611 stems/ha and quantified canopy interception loss (Ic). Pr and Ic for the experimental period were 1636 and 166 mm, respectively, and Ic/Pr was 10%. The value was approximately the same as values for the other two Moso bamboo forests and lower than values for coniferous and broadleaved forests. On the other hand, Tf/Pr and Sf/Pr for our forest (86% and 4%, respectively) were approximately 10% of Pr larger and smaller than values for the other two Moso bamboo forests. These results suggest that the difference in stem density greatly affects precipitation partitioning (i.e. Tf/Pr and Sf/Pr) but does not greatly change Ic/Pr. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
47.
This paper reports baseline levels of litter (macro, meso and microplastics) in sediments collected from different areas of the Croatian MPA of the Natural Park of Tela??ica bay (Adriatic Sea, GSA n. 17). The distribution of total abundance according to size, for all analysed locations evidences that microplastics are the dominant fraction concerning item's numbers. In all analysed samples no macroplastics were found, while microplastics are 88.71% and mesoplastics are 11.29% of the total.  相似文献   
48.
ABSTRACT

We present a new model extension for the Water balance Simulation Model, WaSiM, which features (i) snow interception and (ii) modified meteorological conditions under coniferous forest canopies, complementing recently developed model extensions for particular mountain hydrological processes. Two study areas in Austria and Germany are considered in this study. To supplement and constrain the modelling experiments with on-site observations, a network of terrestrial time-lapse cameras was set up in one of these catchments. The spatiotemporal patterns of snow depth inside the forest and at the adjacent open field sites were recorded along with snow interception dynamics. Comparison of observed and modelled snow cover and canopy interception indicates that the new version of WaSiM reliably reconstructs the variability of snow accumulation for both the forest and the open field. The Nash-Sutcliffe efficiency computed for selected runoff events in spring increases from ?0.68 to 0.71 and 0.21 to 0.87, respectively.  相似文献   
49.
比较了毛竹、石栎和山胡椒叶片的理化属性,采用粗网叶袋法研究了三种落叶在太湖流域上游西苕溪中的分解过程,探讨了毛竹叶成为溪流优势外来能源后对溪流生态过程和底栖动物群落结构的影响.三种落叶的氮、磷含量及叶片厚度都存在显著差异,毛竹叶的氮含量(30.23 g/kg)远高于石栎(20.98 g/kg)和山胡椒(9.69 g/kg),其中毛竹叶的分解速率最快(k=0.00592 d-1),山胡椒(0.00297 d-1)和石栎叶(0.00212 d-1)较慢.三种落叶叶袋间的大型底栖无脊椎动物包括各取食功能团的多度和生物量无显著差异,而4次采样间的差异很显著.大型底栖动物的取食功能团中,撕食者的数量比例最高(40.3%),生物量比例为41.6%,是落叶分解的重要功能类群.撕食者中,利用阔叶筑巢的鳞石蛾Lepi-dostoma数量最多,占全部底栖动物的14%,是该溪流中主要的撕食者类群.因此,由于毛竹叶具有氮、磷含量较高、叶形较窄,以及两年进行一次换叶的特点,当毛竹叶替代其他阔叶秋季落叶的树种成为源头溪流优势外来能源后,可能会改变源头溪流中的氮磷含量、溪流外来能源的量和滞留时间以及底栖动物群落结构.  相似文献   
50.
The forest canopy affects the water entering the forest ecosystem by intercepting rainfall. This is especially pertinent in forests that depend on rainfall for their ecological water needs, quantifying and simulating interception losses provide critical insights into their ecological hydrological processes. In the semi-arid areas of the Loess Plateau, afforestation has become an effective ecological restoration measure. However, the rainfall interception process of these plantations is still unclear. To quantify and model the canopy interception of these plantations, we conducted a two-year rainfall redistribution measurement experiment in three typical plantations, including a deciduous broadleaf plantation (Robinia pseudoacacia) and two evergreen coniferous plantations (Platycladus orientalis and Pinus tabuliformis). Based on this, the revised Gash model was used to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. The experiment clarified the rainfall redistribution in the three plantations, and the proportions of throughfall to gross rainfall in Robinia pseudoacacia, Platycladus orientalis, and Pinus tabuliformis were 84.8%, 70.4%, and 75.6%; corresponding, the stemflow proportions were 2.0%, 2.2%, and 1.8%; the interception losses were 13.2%, 27.4%, and 22.6%, respectively. The dominant rainfall pattern during the experiment was characterized by low-amounts, moderate-intensity, and short-duration, during which the highest interception proportions across the three plantations were observed. We used the Penman-Monteith equation and the regression method, respectively, to estimate the canopy average evaporation rate of the revised Gash model, finding that the latter provides a closer match to the measured cumulative interception (NSE >0.7). When simulating interception under the three rainfall patterns, the model with the regression method better simulated the cumulative interception and event-scale interception for Platycladus orientalis and Pinus tabuliformis plantations under the dominant rainfall pattern. The results contribute valuable information to assess the impact of forest rainfall interception on regional hydrologic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号