首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   18篇
  国内免费   40篇
地球物理   120篇
地质学   143篇
海洋学   6篇
综合类   1篇
自然地理   12篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   11篇
  2008年   24篇
  2007年   14篇
  2006年   11篇
  2005年   10篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   10篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
201.
An Erratum has been published for this article in Earth Surface Processes and Landforms 28(13) 2003, 1491. Granite domes, boulders and knobs buried within saprolite have been detected beneath lateritic weathering landsurfaces using 2D electrical resistivity tomography (ERT). This technique provides a valuable means of mapping the bedrock topography and the regolith structures underneath landsurfaces, as it is intrinsically very sensitive to the electrical properties of superimposed pedological, hydrological and geological layers, allowing the determination of their relative geometry and spatial relationships. For instance, 2D inverse electrical resistivity models including topographic data permit the de?nition of lithostratigraphic cross‐sections. It shows that resistive layers, such as the more or less hardened ferruginous horizons and/or the bedrock, are generally well differentiated from poorly resistive layers, such as saprolite, including water‐saturated lenses, as has been corroborated by past and actual borehole observations. The analysis of the 2D geometrical relations between the weathering front, i.e. the bedrock topography, and the erosion surface, i.e. the landsurface topography, documents the weathering and erosion processes governing the development of the landforms and the underlying structures, thus allowing the etching hypothesis to be tested. The in?ltration waters are diverted by bedrock protrusions, which behave as structural thresholds compartmentalizing the saprolite domain, and also the regolith water table, into distinct perched saturated subdomains. The diverted waters are thus accumulated in bedrock troughs, which behave like underground channels where the saprolite production rate may be enhanced, provided that the water drainage is ef?cient. If the landsurface topography controls the runoff dynamics, the actual bedrock topography as depicted by ERT imaging in?uences the hydrodynamics beneath the landsurface. In some way, this may control the actual weathering rate and the shaping of bedrock protrusions as granite domes and knobs within thick saprolite, before their eventual future exposure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
202.
Abstract Ductile deformation in the Sanbagawa Metamorphic Belt has been considered to be characterized by uniaxial elongation parallel to the east–west‐trending lineation, based on strain analysis of radiolarian fossils in metachert. However, only limited data were available to test this idea in strongly recrystallized schists. Strain measurements on deformed pillow structures in central Shikoku show uniaxial flattening, whereas pressure shadows around pyrite in the Kanto Mountains indicate constrictional strain. In addition, in the low‐grade part of the Sanbagawa Metamorphic Belt belonging to the Northern Chichibu Belt in the Kanto Mountains, deformed amygdules in pillow lava show flattening strain, which is consistent with the results of strain measurements using radiolarian fossils in the same area. These observations, together with the results of other strain analyses reported so far, indicate that the strain field is not uniform and that the east–west‐trending shearing and stretching were not pervasive in the Sanbagawa Metamorphic Belt.  相似文献   
203.
A detailed multibeam coverage of the eastern offshore of Lipari Island(Aeolian arc) has permitted its subdivision into two sectors with differentmorphobathymetric features. In the northern one, numerous, large, previouslyundetected rhyolitic lava flows have been identified. In the southern one, aconical pyroclastic and epiclastic edifice built on top of afan-shaped lava field has been discovered. Since some of theseoffshore features have no analogues on land, their recognition has furnishednew information about the volcanic processes that built the eastern portionof Lipari Island. In particular, the finding of a huge volume of offshorerhyolitic lava flows, largely exceeding the amount of this kind of lavas onland, shows that the contribution of rhyolitic products in the building ofthe Lipari apparatus has been up to now underestimated. More generally, thecomparison between the land and the offshore units of Lipari volcanicapparatus indicates that a better investigation of the submarine portions ofvolcanic islands can reveal new, unforeseen aspects and greatly enhance ourknowledge about their evolution.  相似文献   
204.
On 21 May 1989, a major earthquake swarm on the Reykjanes Ridge at59°44 N, 29°32 W at a water depth of about 1000 m andabout 500 km southwest of Iceland was detected on both the WorldwideStandard Seismic Network (WWSSN) and Icelandic seismic networks. As part ofa multi-institutional response to this swarm, the Naval ResearchLaboratory arranged for a P3 Orion Aircraft to deploy sonobuoys and AXBTs inthe immediate vicinity of the swarm activity. The detection of the swarmmotivated a survey of the region in 1990, using the towed SeaMARC IIside-looking sonar system. In 1990–1991 the Russian ShirshovInstitute of Oceanology offered the use of its MIR deep-divingsubmersibles to investigate the rise axis for recent volcanism. During 1992,a scientific team comprised of five US and ten Russian scientists mobilizedthe twin, deep diving Russian submersibles to study the spreading axis ofthe Reykjanes Ridge. The resulting data analyses allows us to conclude thatthe 1989 seismic swarm event occurred adjacent to and east of the largeaxial high in the center of our survey area. The length, width and depthrange of the earthquakes were very similar to major seismic swarm eventsconfined to fissure systems in the Krafla region of Iceland. It is likelythat the earthquake swarm was located on a fresh, well-defined systemof fissures and faults extending south of the northernmost axial highstudied. The earthquake swarm was probably associated with an emanation oflava creating a region of high backscatter, located just to the east of thecentral axial high. In addition, the region of high-backscatterremains unsampled because it lay underneath the nadir of the processedSeaMARC tracks used to plan the submersible survey. However many sampleswere taken and structural studies of the evolving Reykjanes Ridge werecarried out.  相似文献   
205.
关于赣中相山矿田相山“碎斑熔岩”   总被引:5,自引:0,他引:5  
张万良  李子颖 《地质论评》2015,61(2):367-375
赣中相山矿田相山杂岩体的主体岩石——"碎斑熔岩"的成因和命名,长期看法不一,主要观点有火山喷发成因、火山溢流成因、火山侵出成因、潜火山侵入成因等,本文通过综述"碎斑熔岩"的岩石学和相带特征,结合剥蚀程度、密度垂向变化研究成果,论述了"碎斑熔岩"不是火山岩而是侵入岩的成因观点。同时,对相山是否存在潜火山岩提出了质疑,探讨了相山"碎斑熔岩"的形成深度问题。认为"碎斑熔岩"命名为碎斑花岗斑岩更符合其侵入成因特点。  相似文献   
206.
The stress field of oceanic lithosphere controls the distribution of submarine petit-spot volcanoes. However, the eruption sites of these petit-spot volcanoes are considered to be limited to concavely flexed regions of lithosphere off the outer rise. Here, we present new data for a recently identified petit-spot lava field on a convexly flexed section of the lithosphere adjacent to the subduction zone offshore of northeast Japan in an area containing more than 80 volcanoes. This area is marked by strongly alkaline lavas that were erupted on the convexly flexed region. As for the concavely flexed region where the petit-spots previously reported, the base of the lithosphere beneath the eruption sites is under extension, whereas the upper part of the lithosphere is under compression. This change in the stress field, from the lower to upper lithosphere, causes ascending dikes to stall in the mid-lithosphere, leading to metasomatic interaction with the surrounding peridotite. The new geochemical data of rocks and xenocrysts presented in this study indicate that strongly alkaline magmas erupted on the convexly flexed region would have ascended more rapidly through the mid-depth of lithosphere because of the extensional regime of the upper lithosphere and decreasing the degree of metasomatic reaction with the surrounding mantle peridotite. The results indicate that the degree of metasomatism and the compositional variations of petit-spot magmas are controlled mainly by the stress field of the lithosphere.  相似文献   
207.
Basaltic 'a'ā lava flows often demonstrate compound morphology, consisting of many juxtaposed and superposed flow units. Following observations made during the 2001 eruption of Mt. Etna, Sicily, we examine the processes that can result from the superposition of flow units when the underlying units are sufficiently young to have immature crusts and deformable cores. During this eruption, we observed that the emplacement of new surface flow units may reactivate older, underlying units by squeezing the still-hot flow core away from the site of loading. Here, we illustrate three different styles of reactivation that depend on the time elapsed between the emplacement of the two flow units, hence the rheological contrast between them. For relatively long time intervals (2 to 15 days), and consequently significant rheological contrasts, superposition can pressurise the underlying flow unit, leading to crustal rupture and the subsequent extrusion of a small volume of high yield strength lava. Following shorter intervals (1 to 2 days), the increased pressure caused by superposition can result in renewed, slow advance of the underlying immature flow unit front. On timescales of < 1 day, where there is little rheological contrast between the two units, the thin intervening crust can be disrupted during superposition, allowing mixing of the flow cores, large-scale reactivation of both units, and widespread channel drainage. This mechanism may explain the presence of drained channels in flows that are known to have been cooling-limited, contrary to the usual interpretation of drainage as an indicator of volume-limited behaviour. Because the remobilisation of previously stagnant lava can occur swiftly and unexpectedly, it may pose a significant hazard during the emplacement of compound flows. Constant monitoring of flow development to identify areas where superposition is occurring is therefore recommended, as this may allow potentially hazardous rapid drainage events to be forecast. Reactivation processes should also be borne in mind when reconstructing the emplacement of old lava flow fields, as failure to recognise their effects may result in the misinterpretation of features such as drained channels.  相似文献   
208.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
209.
 The Cerro Chascon-Runtu Jarita Complex is a group of ten Late Pleistocene (∼85 ka) lava domes located in the Andean Central Volcanic Zone of Bolivia. These domes display considerable macroscopic and microscopic evidence of magma mixing. Two groups of domes are defined chemically and geographically. A northern group, the Chascon, consists of four lava bodies of dominantly rhyodacite composition. These bodies contain 43–48% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole in a microlite-poor, rhyolitic glass. Rare mafic enclaves and selvages are present. Mineral equilibria yield temperatures from 640 to 750  °C and log ƒO2 of –16. Geochemical data indicate that the pre-eruption magma chamber was zoned from a dominant volume of 68% to minor amounts of 76% SiO2. This zonation is best explained by fractional crystallization and some mixing between rhyodacite and more evolved compositions. The mafic enclaves represent magma that intruded but did not chemically interact much with the evolved magmas. A southern group, the Runtu Jarita, is a linear chain of six small domes (<1 km3 total volume) that probably is the surface expression of a dike. The five most northerly domes are composites of dacitic and rhyolitic compositions. The southernmost dome is dominantly rhyolite with rare mafic enclaves. The composite domes have lower flanks of porphyritic dacite with ∼35 vol.% phenocrysts of plagioclase, orthopyroxene, and hornblende in a microlite-rich, rhyodacitic glass. Sieve-textured plagioclase, mixed populations of disequilibrium plagioclase compositions, xenocrystic quartz, and sanidine with ternary composition reaction rims indicate that the dacite is a hybrid. The central cores of the composite domes are rhyolitic and contain up to 48 vol.% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole. This is separated from the dacitic flanks by a banded zone of mingled lava. Macroscopic, microscopic, and petrologic evidence suggest scavenging of phenocrysts from the silicic lava. Mineral equilibria yield temperatures of 625–727  °C and log ƒO2 of –16 for the rhyolite and 926–1000  °C and log ƒO2 of –9.5 for the dacite. The rhyolite is zoned from 73 to 76% SiO2, and fractionation within the rhyolite composition produced this variation. Most of the 63–73% SiO2 compositional range of the lava in this group is the result of mixing between the hybrid dacite and the rhyolite. Eruption of both groups of lavas apparently was triggered by mafic recharge. A paucity of explosive activity suggests that volatile and thermal exchanges between reservoir and recharge magmas were less important than volume increase and the lubricating effects of recharge by mafic magmas. For the Runtu Jarita group, the eruption is best explained by intrusion of a dike of dacite into a chamber of crystal-rich rhyolite close to its solidus. The rhyolite was encapsulated and transported to the surface by the less-viscous dacite magma, which also acted as a lubricant. Simultaneous effusion of the lavas produced the composite domes, and their zonation reflects the subsurface zonation. The role of recharge by hotter, more fluid mafic magma appears to be critical to the eruption of some highly viscous silicic magmas. Received: 23 August 1998 / Accepted: 10 March 1999  相似文献   
210.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号