首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   18篇
  国内免费   40篇
地球物理   120篇
地质学   143篇
海洋学   6篇
综合类   1篇
自然地理   12篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   11篇
  2008年   24篇
  2007年   14篇
  2006年   11篇
  2005年   10篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   10篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
排序方式: 共有282条查询结果,搜索用时 31 毫秒
141.
Explosive eruptions of mafic magmas produce lava fountains whose heights are a function of the exsolved volatile content of the magma, its erupted mass flux, and the geometry of the vent (which may be an elongate fissure or a localized, near-circular conduit). The geometry of the initial vent (and the eruptive behaviour) can be distinctly modified by lava drainback and accumulating ejecta. Hot pyroclasts landing near the vent may coalesce to form rootless flows, some of which may drain back into the vent to be recycled into the eruption products. Rootless flows may be at least partially confined by pre-existing topographic features, or by spatter or cinder ramparts being built up by the eruption itself, so that they accumulate into a lava pond over and around the vent. The erupting jet of magmatic gas and pyroclasts must force its way through such a pond and will entrain some of the pond lava as it does so. The energy expended in entraining and accelerating previously erupted materials will reduce the eruption velocity and the lava fountain height by an amount which can be calculated as a function of the eruption conditions and the lava pond depth (or lava drainback rate). The results of such calculations are presented, and are used to assess the influence of this process on attempts to infer magma volatile contents from field observations of lava fountain heights.  相似文献   
142.
Structural, geomorphological, geophysical and volcanological data have been processed for the implementation of a dedicated GIS through which the structural evolution of the Pleistocene trachytic Cimini volcano (central Italy) has been reconstructed. The evolution of the Cimini complex includes three main close-in time phases: (1) intrusion of a shallow laccolith, rising along NW and NE trending faults and stagnating at the contact between the Mesozoic-Cenozoic and the Pliocene-Pleistocene sedimentary units constituting the bedrock of the volcano; (2) emplacement of lava domes along radial and tangential fractures formed by the swelling induced by the laccolith growth; (3) ignimbrite eruptions and final effusion of olivine-latitic lavas. Domes are both of Pelean and low lava dome type and their morphology was controlled by the location on the inclined surface of the swelled area. Some domes show to have uplifted upper Pliocene thermally metamorphosed clay sediments, suggesting a cryptodome-like growth. Comparison of the top of the Mesozoic-Cenozoic units with the top of the upper Pliocene-Pleistocene sedimentary complex, suggests that the laccolith emplaced in a graben of the Mesozoic-Cenozoic sedimentary complex filled by the Pliocene–Pleistocene sediments uplifted by the shallow intrusion. Stress patterns acting on the Cimini area have been deduced analysing the drainage network and the morphotectonic lineaments. Rose diagrams show a large dispersion of the lineaments reflecting the local presence of radial and tangential fractures. The most frequent extensional NW and NE trending lineaments have regional significance and controlled the magma uprise leading to the laccolith emplacement.  相似文献   
143.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   
144.
热释光的用途很广,但在判断火山活动旋回(期次)以及火山岩类型鉴定方面,尚未涉及。本文通过对大庆徐家围子升深7和杨参1井岩石样品以及其他井部分火山岩样品的热释光特征的研究,发现:①升深7井中,顶部峰型和总积分强度近似,可指示为同期喷发产物;中下部热释光特征表现为“顶底韵律效应”,可能是较晚阶段的火山喷发物对前一阶段顶部有热改造而消耗了部分辐射积累。②杨参1井中根据热释光特征可划分2个旋回和4个期次。下部旋回发育双峰,主峰积分强度差别较大,可能指示底部为多源喷出产物(如多机构产物)混堆,小旋回产物之间叠加;主峰积分强度从下到上依次减小,反映了火山岩喷发强度的降低。上部旋回发育单峰,热释光积分强度相差不大,可能为一套同源产物。③升深7井中未发生明显蚀变作用的安山岩热释光特征相似而杨参1井中岩相均一、未蚀变的凝灰质岩热释光特征也很相似,这表明热释光特征技术应用于火山空落相岩石和火山熔岩岩性判别是有可能的。最后总结了火山岩热释光研究应注意的问题。  相似文献   
145.
Pahoehoe flows interbedded with sediments have been identified in the superior portion of Paraná Continental Flood Basalts (PCFB), west portion of Paraná State, southern Brazil. In the study area peperites are generated by the interaction between lava flows and wet lacustrine sediments (silt and clay). Evidence that the sediments were unconsolidated or poorly consolidated and wet when the lava flowed over them includes vesiculated sediment, sediment in vesicles and fractures in lava flow and in juvenile clasts in the peperite and soft sediment deformation. Hydrodynamic mingling of lava and wet sediments (coarse mingling) is predominant and volcanic rocks and textures related to explosive phase of Molten Fuel Coolant Interaction (MFCI) are not observed in study area. Locally centimeter-sized areas display direct contact between ash-sized juvenile clasts and sediments formed by the collapse of a vapor film. The textures of fluidal peperites in the central PCFB indicate that the relevant factors that led to a coarse mingling between lava/sediment are (1) lava properties (low viscosity); (2) fine grained, unconsolidated or poorly consolidated wet sediment; and (3) a single episode of interaction between lava flows and sediment.  相似文献   
146.
东西走向的北喜马拉雅片麻岩穹隆带位于喜马拉雅造山带核心,记录了造山演化和青藏高原隆升的变质与变形信息。对穹隆构造热结构及其变形历史的重建有助于揭示喜马拉雅造山过程。本次研究选取然巴片麻岩穹隆的各类构造岩开展微观构造解析、碳物质拉曼光谱温度估算(RSCM)和石英组构学(CPO)分析,对比该穹隆各构造层变质和变形温度及其变化。研究结果揭示然巴穹隆被上、下两条环形拆离断层分为三个构造层:下拆离断层以下为下构造层,其由核部淡色花岗岩和片麻岩组成;下拆离断层和上拆离断层之间为中构造层,由强烈韧性变形的低-中级变质的片岩和少量片麻岩组成;上拆离断层以上为上构造层,由板岩、千枚岩和少量片岩组成。碳物质拉曼光谱变质温度计估算结果显示下构造层和中构造层峰期变质温度为550~600℃,上构造层峰期变质温度400~550℃。各构造层韧性变形岩石内石英组构(CPOs)特征揭示:下构造层石英以柱面滑移为主,韧性剪切变形温度超过600℃;而从中构造层底部向上构造层,石英滑移系由柱面滑移逐渐转变为底面滑移为主,响应的变形温度由550℃逐渐降低为300~350℃。综合分析解释认为然巴穹隆新生代以来经历了四期构造变形,分别对应喜马拉雅造山演化四个阶段:始新世(约45Ma)地壳增厚,发生区域变质作用,变质峰期温度达600℃(如下构造层记录),由下构造层向幔部递减(500℃到300℃);在造山伸展阶段,伴随藏南拆离系北向韧性剪切作用以及晚期南北向裂谷的启动提供的东西向伸展环境导致晚中新世淡色花岗岩底辟就位(约8~7Ma),穹隆幔部岩石遭受接触变质作用改造,接触变质峰期温度为570℃。  相似文献   
147.
Oligocene dome complexes of trachydacitic to rhyolitic composition are common in the southern portion of the Mesa Central physiographic province, which forms part of the southern Basin and Range extensional province as well as of the southern Sierra Madre Occidental volcanic province. Generally, dome complexes occur aligned with regional fault systems, mostly associated with the southern Basin and Range province, and thus suggesting that faults controlled the felsic magmas that formed these domes. Two distribution patterns are evident, one aligned NE–SW and another aligned NNE. The set of domes were emplaced at 33–28 Ma. Emplacement of domes occurred in three continuous phases starting with those of trachydacite affinity at 33–32 Ma, to trachydacite–rhyolitic at 32–31 Ma, and finally to those with rhyolitic composition at 31–28 Ma. Felsic magmas that originated the domes were apparently generated by partial melting at the base of the continental crust. Contrary to previous hypothesis, our evidence suggest that these magmas in these particular areas of the Mesa Central were not accumulated in large magma reservoirs emplaced at shallow levels in the crust, but crossed the continental crust directly. Since continental crust in this region is relatively thin (30–33 km), we propose that an intense extensional episode favored the direct ascension of these magmas through the brittle crust, with little interaction with the country rock during ascent to the surface, to end up forming aligned dome chains or complexes. Geochemical data favors this model, as the felsic rocks show no depletions in Nb and Th but instead relatively enrichment in these elements. REE show flat or concave up patterns, suggesting that the magmas involved enriched (fertile), metasomatized lithospheric fluids that generated partial melting at the base of the continental crust. Based upon these data, we infer an intra-plate tectonic setting for these rocks.  相似文献   
148.
An eruption along a 2.5 km-long rhyolitic dyke at Krafla volcano, northern Iceland during the last glacial period formed a ridge of obsidian (Hrafntinnuhryggur). The ridge rises up to 80 m above the surrounding land and is composed of a number of small-volume lava bodies with minor fragmental material. The total volume is < 0.05 km3. The lava bodies are flow- or dome-like in morphology and many display columnar-jointed sides typical of magma–ice interaction, quench-fragmented lower margins indicative of interaction with meltwater and pumiceous upper surfaces typical of subaerial obsidian flows. The fragmental material compromises poorly-sorted perlitic quench hyaloclastites and poorly-exposed pumiceous tuffs. Lava bodies on the western ridge flanks are columnar jointed and extensively hydrothermally altered. At the southern end of the ridge the feeder dyke is exposed at an elevation  95 m beneath the ridge crest and flares upwards into a lava body.Using the distribution of lithofacies, we interpret that the eruption melted through ice only 35–55 m thick, which is likely to have been dominated by firn. Hrafntinnuhryggur is therefore the first documented example of a rhyolitic fissure eruption beneath thin ice/firn. The eruption breached the ice, leading to subaerial but ice/firn-contact lava effusion, and only minor explosive activity occurred. The ridge appears to have been well-drained during the eruption, aided by the high permeability of the thin ice/firn, which appears not to have greatly affected the eruption mechanisms. We estimate that the eruption lasted between 2 and 20 months and would not have generated a significant jökulhlaup (< 70 m3 s− 1).  相似文献   
149.
The stable, persistent, active lava lake at Erebus volcano (Ross Island, Antarctica) provides an excellent thermal target for analysis of spacecraft observations, and for testing new technology. In the austral summer of 2005 visible and infrared observations of the Erebus lava lake were obtained with sensors on three space vehicles Terra (ASTER, MODIS), Aqua (MODIS) and EO-1 (Hyperion, ALI). Contemporaneous ground-based observations were obtained with hand-held infrared cameras. This allowed a quantitative comparison of the thermal data obtained from different instruments, and of the analytical techniques used to analyze the data, both with and without the constraints imposed by ground-truth. From the thermal camera data, in December 2005 the main Erebus lava lake (Ray Lake) had an area of ≈ 820 m2. Surface colour temperatures ranged from 575 K to 1090 K, with a broad peak in the distribution from 730 K to 850 K. Total heat loss was estimated at 23.5 MW. The flux density was ≈ 29 kW m− 2. Mass flux was estimated at 64 to 93 kg s− 1. The best correlation between thermal emission and emitting area was obtained with ASTER, which has the best combination of spatial resolution and wavelength coverage, especially in the thermal infrared. The high surface temperature of the lava lake means that Hyperion data are for the most part saturated. Uncertainties, introduced by the need to remove incident sunlight cause the thermal emission from the Hyperion data to be a factor of about two greater than that measured by hand-held thermal camera. MODIS also over-estimated thermal output from the lava lake by the same factor of two because it was detecting reflected sunlight from the rest of the pixel area. The measurement of the detailed temperature distribution on the surface of an active terrestrial lava lake will allow testing of thermal emission models used to interpret remote-sensing data of volcanism on Io, where no such ground-truth exists. Although the Erebus lava lake is four orders of magnitude smaller than the lava lake at Pele on Io, the shape of the integrated thermal emission spectra are similar. Thermal emission from this style of effusive volcanism appears to be invariant. Excess thermal emission in most Pele spectra (compared to Erebus) at short wavelengths (< 3 μm) is most likely due to disruption of the surface on the lava lake by escaping volatiles.  相似文献   
150.
Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (∼ 1000°C) and oxygen fugacity (ΔlogFMQ = − 0.9) have been stable. Large temperature variations at the lake surface (~ 400–500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3–22.9Ab62.8–68.1Or11.4–27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization and shallow convection cycles the anorthoclase crystals through many episodes of growth resulting in their exceptional size. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号