首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1908篇
  免费   22篇
  国内免费   162篇
测绘学   62篇
大气科学   95篇
地球物理   527篇
地质学   1109篇
海洋学   129篇
天文学   38篇
综合类   1篇
自然地理   131篇
  2024年   20篇
  2023年   69篇
  2022年   50篇
  2021年   70篇
  2020年   165篇
  2019年   92篇
  2018年   125篇
  2017年   182篇
  2016年   115篇
  2015年   138篇
  2014年   234篇
  2013年   363篇
  2012年   219篇
  2011年   10篇
  2010年   10篇
  2009年   11篇
  2008年   22篇
  2007年   13篇
  2006年   13篇
  2005年   20篇
  2004年   25篇
  2003年   15篇
  2002年   26篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   8篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1978年   1篇
排序方式: 共有2092条查询结果,搜索用时 15 毫秒
31.
32.
Neoarchaean–Palaeoproterozoic granitoids of the Aravalli craton, represented by four plutons with different ages, viz. Gingla (2.6–2.4 Ga), Ahar River (2562 Ma), Untala (2505 Ma), and Berach (2440 Ma) granitoids, are classified into three suites: TTG-like, Sanukitoid, and High-K Granitoid suite, all exhibiting negative Nb and Ti anomalies. The TTG-like suite is characterized by high contents of SiO2, Na2O, and LREEs, high (La/Yb)N, low contents of K2O, MgO, Cr, and Ni, and low (Dy/Yb)N, suggesting that this suite formed by partial melting of a subducted basaltic slab without interacting with a mantle wedge. In contrast, the calc-alkaline Sanukitoid suite is marked by a high content of LILEs and mantle-compatible elements, which indicate that this suite formed by partial melting of a slab-fluid metasomatized mantle wedge in a subduction-related arc environment. On the other hand, the High-K Granitoid suite is characterized by high contents of SiO2 and K2O, and low contents of Na2O, MgO, Cr, and Ni with variable Eu anomaly, along with high (La/Sm)N and (La/Yb)N, and low (Dy/Yb)N and Nb/Th. Some high-K granitoids also exhibit A-type characteristics. These features indicate that the High-K Granitoid suite formed by melting of crustal rocks. Early Neoarchaean continental crust formation reflected a slab-melting-dominated magmatic process as evidenced by the TTG-like suite, whereas Palaeoproterozoic petrogenesis was governed by the interaction of slab melt with mantle wedge as demonstrated by the Sanukitoid suite. The High-K Granitoid suite formed during the waning stages of subduction. This study reveals that granitic rocks of the Aravalli craton evolved from slab melting in the Neoarchaean to melting of mantle wedge in the Palaeoproterozoic. Melting of older crust led to the formation of the High-K Granitoid suite.  相似文献   
33.
Pile foundations that support transmission towers or offshore structures are dominantly subjected to cyclic lateral load induced by wind and waves. For a successful design, it is crucial to investigate the effect of cyclic lateral loads on the pile behavior that is loaded laterally. Although the py curve method is generally utilized to design the cyclic laterally loaded pile foundations, the effect of cyclic lateral loads on the pile has not been properly implemented with the py curve. This reflects a lack of consideration of the overall stiffness change in soil–pile interaction. To address this, a series of model pile tests were conducted in this study on a preinstalled aluminum flexible pile under various sandy soil conditions. The test results were used to investigate the effect of cyclic lateral loads on the py behavior. The cyclic py curve, which properly takes into account this effect, was developed as a hyperbolic function. Pseudo-static analysis was also conducted with the proposed cyclic py curve, which showed that it was able to properly simulate cyclic laterally loaded pile behavior in sandy soil.  相似文献   
34.
 The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows. Received: January 30, 1995 / Accepted: January 22, 1996  相似文献   
35.
The Gurupi Belt (together with the São Luís cratonic fragment), in north-northeastern Brazil, has been described in previous studies that used extensive field geology, structural analysis, airborne geophysics, zircon U–Pb dating, and whole-rock Sm–Nd isotope and geochemical data as a polyphase orogenic belt, with the Rhyacian being the main period of crust formation. This was related to a 2240 Ma to 2140 Ma accretionary processes that produced juvenile crust, which has subsequently been reworked during a collisional event at 2100 ± 20 Ma, with little evidence of Archean crust. In this study, we use Lu–Hf isotopic data in zircon from granitoids (including gneiss) of variable magmatic series, and amphibolite to improve the knowledge of this scenario, and investigate additional evidence of recycling of Archean basement. Pre-collisional high Ba-Sr and ferroan granitoids and amphibolite formed in island arc (2180–2145 Ma), show only zircons with suprachondritic εHf values (ca. +1 to +8) indicating the large predominance of juvenile magmas. Only 10% of the data show slightly negative εHf values (0 to ?4), which have been observed in granodiorite-gneiss formed in continental arc (2170–2140 Ma), and in strongly peraluminous collisional granites (2125–2070 Ma), indicating the rework of older Paleoproterozoic to Archean components (HfTDM = 2.11–3.69 Ga). A two-component mixing model using both Hf and published Nd isotope data are in line with this interpretation and indicate more than 90% of juvenile material, and less influence of Archean materials. Comparing with other Rhyacian terranes that are interpreted to have been close to Gurupi in a pre-Columbia configuration (ca. 2.0 Ga), our results differ from those of SE-Guiana Shield, which show strong influence of Archean protoliths, and are very similar to those of the central-eastern portion of the Baoulé-Mossi Domain of the West African Craton, which has also been formed largely by juvenile magmas in an accretionary-collisional orogen.  相似文献   
36.
The Cenozoic metallogeny in Greece includes numerous major and minor hydrothermal mineral deposits, associated with the closure of the Western Tethyan Ocean and the collision with the Eurasian continental plate in the Aegean Sea, which started in the Cretaceous and is still ongoing. Mineral deposits formed in four main periods: Oligocene (33–25 Ma), early Miocene (22–19 Ma), middle to late Miocene (14–7 Ma), and Pliocene-Pleistocene (3–1.5 Ma). These metallogenic periods occurred in response to slab-rollback and migration of post-collisional calc-alkaline to shoshonitic magmatism in a back-arc extensional regime from the Rhodopes through the Cyclades, and to arc-related magmatism along the active south Aegean volcanic arc. Invasion of asthenospheric melts into the lower crust occurred due to slab retreat, and were responsible for partial melting of metasomatized lithosphere and lower crustal cumulates. These geodynamic events took place during the collapse of the Hellenic orogen along large detachment faults, which exhumed extensive metamorphic core complexes in mainly two regions, the Rhodopes and the Cyclades. The detachment faults and supra-detachment basins controlled magma emplacement, fluid circulation, and mineralization.The most significant mineralization styles comprise porphyry, epithermal, carbonate-replacement, reduced intrusion-related gold, intrusion-related Mo-W and polymetallic veins. Porphyry and epithermal deposits are commonly associated with extensive hydrothermal alteration halos, whereas in other cases alteration is of restricted development and mainly structurally controlled. Porphyry deposits include Cu-Au-, Cu-Mo-Au-Re, Mo-Re, and Mo-W variants. Epithermal deposits include mostly high- and intermediate-sulfidation (HS and IS) types hosted in volcanic rocks, although sedimentary and metamorphic rock hosted mineralized veins, breccias, and disseminations are also present. The main metal associations are Cu-Au-Ag-Te and Pb-Zn-Au-Ag-Te in HS and IS epithermal deposits, respectively. Major carbonate-replacement deposits in the Kassandra and Lavrion mining districts are rich in Au and Ag, and together with reduced intrusion-related gold systems played a critical role in ancient economies. Finally hundreds of polymetallic veins hosted by metamorphic rocks in the Rhodopes and Cyclades significantly add to the metal endowment of Greece.  相似文献   
37.
The large low-grade Piaotang W–Sn deposit in the southern Jiangxi tungsten district of the eastern Nanling Range, South China, is related to a hidden granite pluton of Jurassic age. The magmatic-hydrothermal system displays a zonation from an inner greisen zone to quartz veins and to peripheral veinlets/stringers (Five-floor zonation model). Most mineralization is in quartz veins with wolframite > cassiterite. The hidden granite pluton in underground exposures comprises three intrusive units, i.e. biotite granite, two-mica granite and muscovite granite. The latter unit is spatially associated with the W–Sn deposit.Combined LA-MC-ICP-MS U–Pb dating of igneous zircon and LA-ICP-MS U–Pb dating of hydrothermal cassiterite are used to constrain the timing of granitic magmatism and hydrothermal mineralization. Zircon from the three granite units has a weighted average 206Pb/238U age of 159.8 ± 0.3 Ma (2 σ, MSWD = 0.3). The cathodoluminescence (CL) textures indicate that some of the cassiterite crystals from the wolframite-cassiterite quartz vein system have growth zonations, i.e. zone I in the core and zone II in the rim. Dating on cassiterite (zone II) yields a weighted average 206Pb/238U age of 159.5 ± 1.5 Ma (2 σ, MSWD = 0.4), i.e. the magmatic and hydrothermal systems are synchronous. This confirms the classical model of granite-related tin–tungsten mineralization, and is against the view of a broader time gap of >6 Myr between granite magmatism and W–Sn mineralization which has been previously proposed for the southern Jiangxi tungsten district. The elevated trace element concentrations of Zr, U, Nb, Ta, W and Ti suggest that cassiterite (zone II) formed in a high-temperature quartz vein system related to the Piaotang granite pluton.  相似文献   
38.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   
39.
The Cenomanian–Turonian Boundary Event (CTBE) event is not associated with a transgression on the southern margin of the Subalpine Basin, but with a steady shallowing-up trend beginning in the lower half of the δ13C positive shift. The SW–NE Rouaine Fault had a complex role, first in isolating a black shale basin to the west and a large, deep submarine plateau devoid of black shale to the east, then by a strike-slip movement that induced a forced progradation to the north of the southern platform in the eastern compartment. This compressive tectonic reactivation of the southern margin began around the deposition of the local equivalent of the Plenus bed of boreal basins, as shown by correlation supported by both isotope and palaeontological data. Other local data are pieced together to suggest that the whole of SE France underwent a short-lived transpressive tectonic pulse around the Cenomanian–Turonian boundary, probably connected with the early compressive movement of Africa vs. Europe. On a larger scale, other published data suggest that this pulse could be a global one. It is coeval with renewed thrust loading, volcanism and transgression in the North-American Western Interior, local emergences during the event along the eastern Atlantic margin, suggesting a slight tendency to inversion of the margin, and a tilting to the east of the North-Africa plate that could explain the large transgression recorded from Morocco to Tunisia on the Saharan Craton.New isotope and palaeontological (coiling ratio of Muricohedbergella delrioensis) data from SE France suggest that two coolings of suprabasinal importance occurred just before and during the build-up of the d13C shift, including the boreal “Plenus Marls“, especially its middle limestone bed and its SE France equivalent.Regarding the extinction of the genus Thalmaninella and Rotalipora and during the event, neither anoxia nor climate changes can fully explain the palaeontological crisis, given that Rotalipora cushmani crosses the first phase of anoxia without harm, as well as the two coolings, not only in SE France but on a large scale, as shown by the correlation of the published data. This extinction needs alternative explanations as we challenge both anoxia and climate as major causes.  相似文献   
40.
Zircon U–Pb dates for felsic and intermediate to mafic dikes intruding into the Ryoke granitoids and metamorphic rocks at selected outcrops in the Takamiyama area of the eastern Kii Peninsula, southwest Japan, were determined along with their geology and petrography to reveal the history of Cretaceous magmatism. At each outcrop, the felsic and intermediate to mafic dikes exhibit specific structures that are indicative of magma intermingling and have coeval intrusion ages of ca. 81–77 Ma. Our zircon U–Pb data complement previously published data, suggesting that the mafic magmatism continued intermittently from 83 to 76 Ma in the Takamiyama area and that magmatism migrated eastward within the Ryoke Belt. A comparison of intrusion ages between a dike and a host Ryoke granitoid at one outcrop indicates that the host rock experienced ductile deformation at ~88 to ~83 Ma. Judging from the small number of zircons and the concordant date distributions, we didn't recognize the evidence suggesting the partial melting of the host rocks, as Nakajima et al. (Journal of the Geological Society of Japan, 2021, 127, 69–78) reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号