首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   89篇
  国内免费   76篇
测绘学   1篇
大气科学   43篇
地球物理   52篇
地质学   398篇
海洋学   66篇
天文学   11篇
综合类   28篇
自然地理   103篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   25篇
  2020年   9篇
  2019年   27篇
  2018年   10篇
  2017年   18篇
  2016年   10篇
  2015年   15篇
  2014年   20篇
  2013年   41篇
  2012年   20篇
  2011年   23篇
  2010年   33篇
  2009年   37篇
  2008年   36篇
  2007年   39篇
  2006年   32篇
  2005年   34篇
  2004年   30篇
  2003年   17篇
  2002年   27篇
  2001年   40篇
  2000年   22篇
  1999年   13篇
  1998年   19篇
  1997年   24篇
  1996年   14篇
  1995年   14篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
排序方式: 共有702条查询结果,搜索用时 31 毫秒
41.
The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.  相似文献   
42.
The recent discovery of ice-striated surfaces associated with the late Paleozoic Aquidauana Formation suggests that glaciers coming from southwest Africa reached westernmost parts of the Paraná Basin in central Brazil. Abrasion features were developed by glaciers moving from SSE towards NNW, mainly on an unconsolidated bed. These records expand to about 1,050,000 km2, the coverage of the late Paleozoic glaciation in the region of the Paraná Basin in Western Gondwana.

Resumen

A recente descoberta de superfícies estriadas associadas à Formação Aquidauana, de idade permocarbonífera, sugere que as geleiras provenientes do sudoeste da África alcançaram as porções ocidentais da Bacia do Paraná, na região central do Brasil. As feições de abrasão foram geradas pelo deslocamento de geleiras de SSE para NNW, principalmente sobre substrato inconsolidado. Estes novos registros evidenciam que a glaciação neopaleozóica cobriu uma área de pelo menos de 1.050.000 km2 na região ocupada pela Bacia do Paraná no Gondwana Ocidental.  相似文献   
43.
It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.  相似文献   
44.
Expeditions during the summers of 2002 and 2003 implemented continuous monitoring of near-surface (2 m height) atmospheric CO2 and H2O concentrations at the 4500 m elevation on Muztagata. The resultant data sets reveal a slight decrease of CO2 concentrations (of about 5 μmol·mol-1) and changes in the diurnal variations from the end of June to the middle August. The daily maximum CO2 concentrations occur between 02:30-05:30 AM (local time) and the minimum levels occur between 12:00-15:30 PM. The atmospheric CO2 concentrations in the summer of 2002 were around 5 μmol·mol-1 lower than those during the same period of 2003, whereas the diurnal amplitude was higher. In contrast, we found that the daily mean atmospheric H2O content in 2003 was much lower than that in 2002 and there exists a striking negative correlation between CO2 and H2O concentrations. We therefore suggest that the near-surface atmospheric CO2 concentration is affected not only by photosynthesis and respiration, but also by the air H2O content in the glaciated region around Muztagata.  相似文献   
45.
In this article, Milkov and Sassen’s model is selected to calculate the thickness of the gas hydrate stable zone (GHSZ) and the amount of gas hydrate in the Xisha (西沙) Trough at present and at the last glacial maximum (LGM), respectively, and the effects of the changes in the bottom water temperature and the sea level on these were also discussed. The average thickness of the GHSZ in Xisha Trough is estimated to be 287 m and 299 m based on the relationship between the GHSZ thickness and the water depth established in this study at present and at LGM, respectively. Then, by assuming that the distributed area of gas hydrates is 8 000 km2 and that the gas hydrate saturation is 1.2% of the sediment volume, the amounts of gas hydrate are estimated to be ~2.76×1010 m3 and ~2.87×1010 m3, and the volumes of hydrate-bound gases are ~4.52×1012 m3 and ~4.71×1012 m3 at present and at LGM, re- spectively. The above results show that the thickness of GHSZ decreases with the bottom water tem- perature increase and increases with the sea level increase, wherein the effect of the former is larger than that of the latter, that the average thickness of GHSZ in Xisha Trough had been reduced by ~12 m, and that 1.9×1011 m3 of methane is released from approximately 1.1×109 m3 of gas hydrate since LGM. The released methane should have greatly affected the environment.  相似文献   
46.
The selection of high-resolution loess sections is needed in order to determine the climatic variability of the East Asian Monsoon during the last interglacial. Two sequences of S1 on the eastern and west-ern sides of the Liupan Mountain were both composed of five paleosol layers and four loess layers,indicating that there were five strong summer monsoon events and four strong winter monsoon events in MIS5. This corresponds with other records of the East Asian Monsoon,along with NGRIP and the North Atlantic records,implying that the climate of the Northern Hemisphere was very instable during the last interglacial. Two layers of paleosols and one layer of loess had developed during MIS5a and MIS5c. Compared with MIS5e,the climate in MIS5a and MIS5c fluctuated more intensively on a millen-nial scale,whereas the climate was relatively stable in MIS5e.  相似文献   
47.
Z.-D Feng 《GeoJournal》1998,44(4):355-362
Two opposing theories are circulating with regard to the extent of the Last Glacial ice cover in the Tibetan Plateau. One says that only less than 20% of plateau was covered with ice, and another insists that the plateau be completely covered with an extensive coalescing icesheet. The extent of the ice cover is thought to be significant in shaping global climatic systems, and a further discussion on this issue may help to understand the earth's surface feedback mechanisms to the global climates. This paper focuses on the Last Glacial snowline reconstruction and uses the reconstructed snowline to argue against the existence of an extensive coalescing icesheet. The reconstructed Last Glacial snowlines suggest that the snowlines dropped 500–700 m in the western and northern marginal mountains and about 1000 m in the southern and eastern marginal mountains of the Tibetan Plateau. However, the magnitude of the snowline dropping decreases dramatically towards the interior of the plateau, from 300–400 m in those mountains adjacent to the marginal mountains to about 100 m in the driest area in the interior. This means that the snowlines were too high and associated glaciers were too limited to extend to the vast intermountainous basins. To be blamed are weakened summer monsoons and lowered condensation elevations, both of which were probably responsible for not bringing in an adequate amount of precipitation into the interior for developing an extensive coalescing icesheet. The relatively high radiation in these relatively low latitudes could be a major negative force to prevent the snow and ice from forming a coalescing icesheet. In contrast, the enhanced plateau blockade to the monsoons may have helped to significantly lower the snowlines and expand the glaciers in the outer slopes of the southern and eastern marginal mountains. The westerlies may have greatly helped those glaciers in the western and northern marginal mountains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
48.
The occurrence of pronounced climate reversals during the last glacial termination has long been recognised in palaeoclimate records from both hemispheres and from high to low latitudes. Accurate constraint of both the timing and magnitude of events, such as the Younger Dryas and Antarctic Cold Reversal, is vital in order to test different hypotheses for the causes and propagation of abrupt climate change. However, in contrast to higher‐latitude regions, well‐dated records from the Tropics are rare and the structure of late‐glacial tropical climate remains uncertain. As a step toward addressing this problem, we present an in situ cosmogenic 3He surface exposure chronology from Nevado Coropuna, southern Peru, documenting a significant fluctuation of the ice margin during the late‐glacial period. Ten tightly clustered ages from a pair of moraines located halfway between the modern glacier and the Last Glacial Maximum terminus range from 11.9 to 13.9 ka and give an arithmetic mean age of 12.8 ± 0.7 ka (1σ). These data constitute direct evidence for a readvance, or prolonged stillstand, of glaciers in the arid Andes of southwestern Peru. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
49.
Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tengger Dcsert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, Belling, Older Dryas, AllerФd, lntra-AllerФd Cold Period (1ACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (BФlling/AllerФd) period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore,the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand,the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.  相似文献   
50.
The interannual variability of global temperature and precipitation during the last millennium is analyzed using the results of ten coupled climate models participating in the Paleoclimate Modelling Intercomparison Project Phase 3. It is found that large temperature(precipitation) variability is most dominant at high latitudes(tropical monsoon regions), and the seasonal magnitudes are greater than the annual mean. Significant multi-decadal-scale changes exist throughout the whole period for the zonal mean of both temperature and precipitation variability, while their long-term trends are indistinctive. The volcanic forcings correlate well with the temperature variability at midlatitudes, indicating possible leading drivers for the interannual time scale climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号