首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1315篇
  免费   118篇
  国内免费   109篇
测绘学   124篇
大气科学   45篇
地球物理   285篇
地质学   281篇
海洋学   35篇
天文学   572篇
综合类   78篇
自然地理   122篇
  2024年   6篇
  2023年   4篇
  2022年   15篇
  2021年   14篇
  2020年   15篇
  2019年   26篇
  2018年   16篇
  2017年   31篇
  2016年   30篇
  2015年   30篇
  2014年   33篇
  2013年   65篇
  2012年   31篇
  2011年   32篇
  2010年   42篇
  2009年   71篇
  2008年   77篇
  2007年   117篇
  2006年   89篇
  2005年   74篇
  2004年   79篇
  2003年   75篇
  2002年   77篇
  2001年   59篇
  2000年   71篇
  1999年   53篇
  1998年   46篇
  1997年   50篇
  1996年   31篇
  1995年   36篇
  1994年   28篇
  1993年   27篇
  1992年   20篇
  1991年   11篇
  1990年   14篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1542条查询结果,搜索用时 953 毫秒
991.
In the present paper the equations of the translatory motion of the major planets and the Moon and the Poisson equations of the Earth’s rotation in Euler parameters are reduced to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth’s rotation) and the evolution of the Earth’s rotation (depending on the planetary and lunar evolution). Hence, the theory of the Earth’s rotation is presented by means of the series in powers of the evolutionary variables with quasi-periodic coefficients.  相似文献   
992.
Using the high-quality data set of 165 images taken at 11 epochs over the 5.13 h rotation of the large C-type Asteroid 511 Davida, we find the dimensions of its triaxial ellipsoid model to be 357±2×294±2×231±50 km. The images were acquired with the adaptive optics system on the 10 m Keck II telescope on December 27, 2002. The a and b diameters are much better determined than previously estimated from speckle interferometry and indirect measurements, and our mean diameter, (abc)1/3=289±21 km, is 19% below previous estimates. We find the pole to lie within 2° of [RA=295°; Dec=0°] or in Ecliptic coordinates [λ=297°; β=+21°], a significant improvement to the pole direction. Otherwise, previous determinations of the axial ratios agree with our new results. These observations illustrate that our technique of finding the dimensions and pole of an asteroid from its changing projected size and shape is very powerful because it can be done in essentially one night as opposed to decades of lightcurves. Average departures of 3% (5 km) of the asteroid's mean radius from a smooth outline are detected, with at least two local positive-relief features and at least one flat facet showing approximately 15 km deviations from the reference best-fit ellipsoid. The facet is reminiscent of large global-scale craters on Asteroid 253 Mathilde (also a C-type) when seen edge-on in close-up images from the NEAR mission flyby. We show that giant craters (up to 150 km diameter, the size of the largest facets seen on Davida) can be expected from the impactor size distribution, without likelihood of catastrophic disruption of Davida.  相似文献   
993.
994.
We have performed a comparative analysis of the results of our study of the 22-year rotation variations obtained from data on large-scale magnetic fields in the Hα line, magnetographic observations, and spectral-corona observations. All these types of data suggest that the rotation rate at low latitudes slows down at an epoch close to the maximum of odd activity cycles. The 22-year waves of rotation-rate deviation from the mean values drift from high latitudes toward the equator in a time comparable to the magnetic-cycle duration. We discuss the possibility of the generation of a solar magnetic cycle by the interaction of 22-year torsional oscillations with the slowly changing or relic magnetic field. We consider the generation mechanisms of the high-latitude magnetic field through a superposition of the magnetic fields produced by the decay and dissipation of bipolar groups and the relic or slowly changing magnetic field and a superposition of the activity wave from the next activity cycle at high latitudes.  相似文献   
995.
介绍和论述了在后牛顿引力理论(PPN形式)中在优越参考系和非优越参考系中经过参数化后引力常数变化对地球自转产生的效应,其中特别重点介绍了年周期变化的效应。此外也将理论结果同观测结果相对比。  相似文献   
996.
In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958–5977 (2003); Astron. Astrophys. 415, 1187–1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75–108 (2005); Ann. New York Acad. Sci. 1065, 346–374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a noninertial frame), a mere amendment of the Hamiltonian makes the equations yield nonosculating Andoyer elements. To make them osculating, extra terms should be added to the equations (but then the equations will no longer be canonical). Calculations in nonosculating variables are mathematically valid, but their physical interpretation is not easy. Nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit. (A nonosculating i may differ much from the real inclination of the orbit, given by the osculating i.) Nonosculating Andoyer elements correctly describe perturbed attitude, but their interconnection with the angular velocity is a nontrivial issue. The Kinoshita–Souchay theory tacitly employs nonosculating Andoyer elements. For this reason, even though the elements are introduced in a precessing frame, they nevertheless return the inertial velocity, not the velocity relative to the precessing frame. To amend the Kinoshita–Souchay theory, we derive the precessing-frame-related directional angles of the angular velocity relative to the precessing frame. The loss of osculation should not necessarily be considered a flaw of the Kinoshita–Souchay theory, because in some situations it is the inertial, not the relative, angular velocity that is measurable [Schreiber, K. U. et al.: J. Geophys. Res. 109, B06405 (2004); Petrov, L.: Astron. Astrophys. 467, 359–369 (2007)]. Under these circumstances, the Kinoshita–Souchay formulae for the angular velocity should be employed (as long as they are rightly identified as the formulae for the inertial angular velocity).  相似文献   
997.
998.
Theoretical study indicates that a contact binary system would merge into a rapidly rotating single star due to tidal instability when the spin angular momentum of the system is more than a third of its orbital angular momentum. Assuming that W Ursae Majoris (W UMa) contact binary systems rigorously comply with the Roche geometry and the dynamical stability limit is at a contact degree of about 70 per cent, we obtain that W UMa systems might suffer Darwin's instability when their mass ratios are in a region of about 0.076–0.078 and merge into the fast-rotating stars. This suggests that the W UMa systems with mass ratio   q ≤ 0.076  cannot be observed. Meanwhile, we find that the observed W UMa systems with a mass ratio of about 0.077, corresponding to a contact degree of about 86 per cent would suffer tidal instability and merge into the single fast-rotating stars. This suggests that the dynamical stability limit for the observed W UMa systems is higher than the theoretical value, implying that the observed systems have probably suffered the loss of angular momentum due to gravitational wave radiation (GR) or magnetic stellar wind (MSW).  相似文献   
999.
1000.
In the present study, we consider six years data of spot groups that have well developed leading and following spots obtained from the Kodaikanal Observatory white light pictures and occurrence of Hα flares. From the daily observations, we compute the variations in rotation rates, meridional velocity, the areas and longitudinal separations. We find that among all these variations, the occurrence of abnormal rotation rates (the rotation rates that have greater than 1σ and longitudinal minimum separation during the course of their evolution eventually lead to triggering of flares. We also find that the events of abnormal rotation rates, longitudinal minimum separation and the flares occur mainly during the 50–80% of the sunspots’ life span indicating magnetic reconnection probably below (0.935R⊙) the solar surface. Relevance of these results with the conventional theory of magnetic reconnection is briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号