首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   305篇
  免费   48篇
  国内免费   12篇
测绘学   118篇
大气科学   2篇
地球物理   85篇
地质学   42篇
海洋学   7篇
天文学   68篇
综合类   21篇
自然地理   22篇
  2024年   3篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   14篇
  2018年   11篇
  2017年   24篇
  2016年   9篇
  2015年   15篇
  2014年   15篇
  2013年   16篇
  2012年   17篇
  2011年   17篇
  2010年   20篇
  2009年   16篇
  2008年   18篇
  2007年   17篇
  2006年   21篇
  2005年   11篇
  2004年   13篇
  2003年   29篇
  2002年   12篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1984年   2篇
排序方式: 共有365条查询结果,搜索用时 0 毫秒
91.
The Large Binocular Telescope (LBT) will be the largest single telescope in the world when it is completed in 2005. The unique structure of the telescope incorporates two, 8.4 meter diameter primary mirrors on a 14.4 meter center-to-center mounting. This configuration provides the equivalent collecting area of a 12 meter telescope, and when combined coherently, the two optical paths offer very interesting possibilities for interferometry. Two initial interferometric instruments are planned for the LBT. A group based at the University of Arizona is constructing LBTI, a pupil-plane, nulling beam combiner operating in the thermal infrared N band. This instrument will search for and measure zodiacal light in candidate stellar systems for the Terrestrial Planet Finder (TPF) and Darwin missions. Expansion ports can accomodate additional instruments. A second group, based in Heidelberg, Arcetri, and Köln, is building LINC-NIRVANA, a near-infrared Fizeau-mode beam combiner. This type of observation preserves phase information and allows true imagery over a wide field of view. Using state-of-the-art detector arrays, coupled with advanced adaptive optics, LINC-NIRVANA will deliver the sensitivity of a 12 m telescope and the spatial resolution of a 23 m telescope, over a field of view up to 2 arc minutes square.  相似文献   
92.
In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is fundamentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engineering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metropolitan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced concrete high-rise building using background vibration noise. By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seismology and earthquake engineering projects for seismic hazard mitigation in urban areas.  相似文献   
93.
This paper presents a review of the current state of the art in the use of terrestrial radar interferometry for the detection of surface changes related to mass movement. Different hardware‐types and acquisition concepts are described, which use either real or synthetic aperture for radar image formation. We present approaches for data processing procedures, paying special attention to the separation of high resolution displacement information from atmospheric phase variations. Recent case studies are used to illustrate applications in terrestrial radar interferometry for change detection. Applications range from detection and quantification of very slow moving (millimeters to centimeters per year) displacements in rock walls from repeat monitoring, to rapid processes resulting in fast displacements (~50 m/yr) acquired during single measurement campaigns with durations of only a few hours. Fast and episodic acting processes such as rockfall and snow avalanches can be assessed qualitatively in the spatial domain by mapping decorrelation caused by those processes. A concluding guide to best practice outlines the necessary preconditions that have to be fulfilled for successful application of the technique, as well as in areas characterized by rapid decorrelation. Empirical data from a Ku‐band sensor show the range of temporal decorrelation of different surfaces after more than two years for rock‐surfaces and after a few seconds to minutes in vegetated areas during windy conditions. The examples show that the displacement field can be measured for landslides in dense grassland, ice surfaces on flowing glaciers and snowpack creep. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
94.
Ground deformation measurements have contributed to a better understanding of the processes and mechanisms involved in natural hazards. Those include landslides, subsidence, earthquakes and volcanic eruptions. Spaceborne Differential Interferometric Synthetic Aperture RADAR (DInSAR) is a well studied technique for measuring ground deformation. Quality of deformation measurements, however, is often degraded by decorrelation. With the advent of fully polarimetric SAR satellite sensors, polarimetric optimization techniques exploiting polarimetric diversity improve the phase quality of interferograms. In this paper, we analyzed three polarimetric optimization methods to determine the optimal one for application in an arid natural environment. We considered coherence decomposition in single and double phase center scenarios. Coherence estimation bias associated with each optimization method has been analyzed. We compared the derived displacement values with terrestrial GPS measurements. The study shows that polarimetric optimization increases the number of coherent pixels by upto 6.89% as compared with a single polarization channel. The study concludes that polarimetric optimization coupled with DInSAR analysis yields more reliable deformation results in a low coherence region.  相似文献   
95.
Interferometric Synthetic Aperture Radar (InSAR) allows production of high resolution DEM and detection of small earth motions using multiple pass SAR data sets obtained by remote sensing satellite. But the whole process has not yet reached sufficient robustness to warrant automated DEM production as commonly produced by stereovision with optical images. The automatic algorithm for precision registration is one of the bottlenecks in InSAR data processing. In this paper, an automatic approach with multi-step image matching algorithm is presented. All procedures are automatically implemented. The experiment is carried out successfully with SIR-C/L-band InSAR data. The triangular piecewise rectification is also advanced in reducing local distortion between the images and processing the large scene image. The primary result has prospect in the precision registration for the repeat-track InSAR data and reveals the potential of the presented automatic strategy.  相似文献   
96.
时间序列InSAR监测地表形变   总被引:1,自引:0,他引:1  
针对相干点目标的时间序列,提出了地表形变InSAR技术监测方法,该方法适用于小数据集分析。并采用郑州地区2007年1月到2010年4月期间的8景ALOS PALSAR数据进行验证分析。研究表明,识别的相干点目标具有大的干涉相干值和小的振幅离差,在时间序列中具有可靠的相位。从误差分析和与ENVISAT PSInSAR结果对比分析表明,该文求得的形变速率标准差在0.34mm/a和5.56mm/a之间,表明提出方法是可靠的。  相似文献   
97.
锥体棱镜作为各种测距仪的附件,属高精度光学元件,且其精度高低对测距仪测距精度影响很大。不少生产厂家在加工中普遍采用先加工出一个正立方体,而后在顶角处斜切出锥体棱镜的加工方法。本文详细讨论了用干涉法检测正立方体各项质量指标,特别提出了利用封闭多边形内角之和恒定的原理消除干涉系统的系统误差,从而使对二面直角的测量可达极高精度。  相似文献   
98.
Abstract

A classification method was developed for mapping land cover in NE Costa Rica at a regional scale for spatial input to a biogeochemical model (CENTURY). To distinguish heterogeneous cover types, unsupervised classifications of Landsat Thematic Mapper data were combined with ancillary and derived data in an iterative process. Spectral classes corresponding to ground control types were segregated into a storage raster while ambiguous pixels were passed through a set of rules to the next stage of processing. Feature sets were used at each step to help sort spectral classes into land cover classes. The process enabled different feature sets to be used for different types while recognizing that spectral classification alone was not sufficient for separating cover types that were defined by heterogeneity. Spectral data included the TM reflective bands, principal components and the NDVI. Ancillary data included GIS coverages of swamp extents, banana plantation boundaries and river courses. Derived data included neighborhood variety and majority measures that captured texture. The final map depicts 18 land cover types and captures the general patterns found in the region. Some confusion still exists between closely related types such as pasture with different amounts of tree cover.  相似文献   
99.
The application of SAR interferometry (InSAR) in topographic mapping is usually limited by geometric/temporal decorrelations and atmospheric effect, particularly in repeat-pass mode. In this paper, to improve the accuracy of topographic mapping with high-resolution InSAR, a new approach to estimate and remove atmospheric effect has been developed. Under the assumptions that there was no ground deformation within a short temporal period and insignificant ionosphere interference on high-frequency radar signals, e.g. X-bands, the approach was focused on the removal of two types of atmospheric effects, namely tropospheric stratification and turbulence. Using an available digital elevation model (DEM) of moderate spatial resolution, e.g. Shuttle Radar Topography Mission (SRTM) DEM, a differential interferogram was firstly produced from the high-resolution InSAR data pair. A linear regression model between phase signal and auxiliary elevation was established to estimate the stratified atmospheric effect from the differential interferogram. Afterwards, a combination of a low-pass and an adaptive filter was employed to separate the turbulent atmospheric effect. After the removal of both types of atmospheric effects in the high-resolution interferogram, the interferometric phase information incorporating local topographic details was obtained and further processed to produce a high-resolution DEM. The feasibility and effectiveness of this approach was validated by an experiment with a tandem-mode X-band COSMO-SkyMed InSAR data pair covering a mountainous area in Northwestern China. By using a standard Chinese national DEM of scale 1:50,000 as the reference, we evaluated the vertical accuracy of InSAR DEM with and without atmospheric effects correction, which shows that after atmospheric signal correction the root-mean-squared error (RMSE) has decreased from 13.6 m to 5.7 m. Overall, from this study a significant improvement to derive topographic maps with high accuracy has been achieved by using the proposed approach.  相似文献   
100.
张涛  万玲  吕孝雷  洪峻 《遥感学报》2019,23(6):1123-1131
星载重轨干涉SAR卫星在高程测绘和形变测量中有着全天时全天候和大范围的优势,其中干涉基线是决定干涉性能的重要指标,而卫星重访轨道对干涉基线起着决定性的作用。通过对现有高分三号干涉数据轨道参数的分析,发现干涉基线相比国外先进卫星过长且稳定性有待提高。本文通过对相对轨道根数和机动控制的分析,得到满足重轨干涉SAR系统要求的稳定基线。以第一次观测的轨道为参考轨道,基于在摄动情况下重复观测轨道与参考轨道的相对轨道根数,计算得到重轨干涉基线的变化规律,并对不同纬度的观测目标进行了样例分析。在基线变化规律的基础上,利用机动速度和相对轨道根数的关系,进一步计算得到满足基线状态需求的机动控制方法。通过实际数据分析,给出了相对轨道根数变化对初始理想构型的影响,验证了重轨干涉基线变化规律符合本文的分析,并利用仿真样例给出了使得重轨干涉基线达到预期要求的机动控制方案。实际数据和仿真实验表明该模型能够通过可长时间观测并准确获得的轨道根数直接计算基线状态,并能从干涉基线需求出发,快速准确的得出对卫星的控制策略。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号