首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   53篇
  国内免费   88篇
测绘学   3篇
大气科学   18篇
地球物理   82篇
地质学   157篇
海洋学   149篇
天文学   2篇
综合类   31篇
自然地理   44篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   7篇
  2020年   15篇
  2019年   17篇
  2018年   15篇
  2017年   18篇
  2016年   11篇
  2015年   22篇
  2014年   23篇
  2013年   27篇
  2012年   24篇
  2011年   29篇
  2010年   20篇
  2009年   27篇
  2008年   31篇
  2007年   22篇
  2006年   24篇
  2005年   20篇
  2004年   12篇
  2003年   12篇
  2002年   19篇
  2001年   10篇
  2000年   5篇
  1999年   16篇
  1998年   5篇
  1997年   2篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1982年   1篇
排序方式: 共有486条查询结果,搜索用时 31 毫秒
411.
Abstract

Marine soft clay with a high salt concentration is widely distributed in coastal areas. In this study, cement-based composites consisting of cement, silica fume, plant ash and NaOH were used as a substitute for ordinary Portland cement, and the effect of salt (sodium chloride) on the strength development of clay was investigated by unconfined compressive strength (UCS) testing and scanning electron microscopy (SEM). With the addition of sodium chloride (NaCl), the amount of cementitious materials decreased, and the salt (sodium chloride) was considered to consume the cement-based composites. The consumption effect could be quantitatively evaluated by the consumption index of salt (CIS) and the clay-water/cement ratio hypothesis. The relationship between the CIS and curing period and an UCS prediction model of clay stabilized with cement-based composites with different salt contents and curing times were established. The CIS gradually decreased with increasing curing time and cement-based composites content. The accuracy of the prediction model was evaluated by a comparative analysis between the measured strengths and predicted strengths; the deviation was mostly within 10%. SEM analyses were employed to describe the changes in the microstructure of the specimens and the influencing mechanism of salt on clay stabilized with cement-based composites.  相似文献   
412.
The storage of inorganic carbon in estuarine wetlands is of great significance for mitigating global warming. The Dagu River estuary and Yanghe River estuary of Jiaozhou Bay were selected as sampling areas, and data analysis was carried out by Duncan method to explore the distribution characteristics and influencing factors of soil inorganic carbon (SIC) reserves. The results showed that increasing distance from the estuary led to higher reserves in the mudflat along the coastal zone. The scouring action of seawater bodies was the main factor driving this distribution. In the vertical section, the SIC reserves in 40-60 cm depth were relatively high, accounting for 34.11% of the 0-60 cm soil depth, and resulting from the transport of water and salt in seawater. In the river flat along the vertical coastal zone, the SIC reserves first decreased and then increased with increasing distance from the sea, and the SIC reserves in 0-20 cm depth were relatively high in the vertical section, accounting for 38.18% of the 0-60 cm soil depth. These reserves were affected by synergetic factors such as oceanic factors and anthropogenic activities. The invasion of Spartina alterniflora decreased the SIC reserves of wetlands, mainly due to its root transformation and the differences of growth characteristics and years being the main reasons for the observed decreases. Aquaculture activities changed the physical and chemical properties of the soil in aquaculture ponds, and consequently changed the distribution of SIC reserves.  相似文献   
413.
The 13C signature of forty-five macroalgal species from intertidal zones at Cádiz Bay was analysed in order to research the extension of diffusive vs. non-diffusive utilisation of dissolved inorganic carbon (DIC) and to perform a comparison with data published for other bio-geographic regions. The ∂13C values ranged from −6.8‰ to −33‰, although the span of variation was different depending on the taxa. Thus, ∂13C for Chlorophyta varied from −7‰ (Codium adhaerens) to −29.6‰ (Flabellia petiolata), while all the Phaeophyceae (excepting Padina pavonica with ∂13C higher than −10‰) had values between −10‰, and −20‰. The widest variation range was recorded in Rhodophyta, from values above −10‰ (Liagora viscida) to values lower than −30‰ obtained in three species belonging to the subclass Rhodymeniophycidae. Accordingly, the mean ∂13C value calculated for red algae (−20.2‰) was significantly lower than that for brown (−15.9‰) and green algae (−15.6‰). Most of the analysed red algae were species inhabiting crevices and the low intertidal fringe which explains that, on average, the shaded-habitat species had a ∂13C value lower than those growing fully exposed to sun (i.e. in rockpools or at the upper intertidal zone). The comparison between the capacity for non-diffusive use of DIC (i.e. active or facilitated transport of HCO3 and/or CO2) and the ∂13C values reveals that values more negative than −30‰ indicate that photosynthesis is dependent on CO2 diffusive entry, whereas values above this threshold would not indicate necessary the operation of a non-diffusive DIC transport mechanism. Furthermore, external carbonic anhydrase activity (extCA) and ∂13C values were negatively correlated indicating that the higher the dependence of the photosynthesis on the CO2 supplied from HCO3 via extCA, the lower the ∂13C in the algal material. The comparison between the ∂13C values obtained for the analysed species and those published for species inhabiting other bio-geographic areas (warm-temperate, cold and polar) suggests that globally (at least for the red and brown algae) the non-diffusive entry of DIC is more widely spread among the species from Cádiz Bay than among those of polar regions. If it is assumed that non-diffusive use of DIC implies saturation of photosynthesis at the present-day CO2 concentration in seawater, our data indicate that the potential impact of the acidification on photosynthesis in the seaweed communities will be different depending on the latitude.  相似文献   
414.
The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased...  相似文献   
415.
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.  相似文献   
416.
郭水伙 《台湾海峡》2009,28(1):71-76
据南海环境调查资料,研究了南海水体NO3-N、NO2-N、NH4-N、DIN含量及无机氮组成的垂直变化规律.结果表明:NO3-N、NO2-N、NH4-N、DIN含量范围和均值分别为0.00~43.9,12.32;0.00~1.69,0.07;0.17-14.87,1.32;0.35~45.92,13.73μmol/dm^3.其含量分布与垂直变化特征与深海、大洋的相似,表明南海水是太平洋的变性水体.NO3-N、DIN含量的垂直分布跃层出现于75~500m间,夏季的跃层强度分别为6.61X10-’、6.68×1012Ixmol/(dm’·m),冬季的均为5.65×10^-2μmol/(dm^3·m);NO2-N含量的最大值多出现于75~100m之间,NH4-N含量的最大值出现在0m层.在浮游植物活动较旺盛的真光层中,NH4-N为无机氮的主要存在形态(平均占比为64.4%).真光层以下NO3-N为无机氮的主要存在形态(平均占比≥90.8%).对三项无机氮含量与其他生源要素、水文因子的相关分析结果表明,NO3-N含量与PO4-P、TDP、TP、SiO3-Si、S均呈显著正相关,与pH、DO、O2%、t则呈显著负相关.  相似文献   
417.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   
418.
This study investigated CO2 degassing and related carbon isotope fractionation effects in the Wiesent River that drains a catchment in the karst terrain of the Franconian Alb, Southern Germany. The river was investigated by physico‐chemical and stable isotope analyses of water and dissolved inorganic carbon during all seasons along 65‐km long downstream transects between source and mouth. Calculated pCO2 values at the source were 21 400 ± 2400 µatm. The pCO2 rapidly decreased in the river water and dropped to an average of 1240 ± 330 µatm near the mouth. About 90% of this decrease occurred within the first 6 km of the river. The river was supersaturated with respect to CO2 over its entire course and must have acted as a continuous year‐round CO2 source to the atmosphere. The average CO2 flux from the karst river was estimated with 450 mmol m?2 day?1 with higher fluxes up to 5680 mmol m?2 day?1 at the source. At the source, δ13CDIC values showed no seasonal variations with an average of ?14.2 ± 0.2‰. This indicated that groundwater retained high pCO2 mainly from soil CO2. The contribution of soil CO2 to dissolved inorganic carbon was estimated at 65% to 72%. The downstream CO2 loss caused a positive shift in δ13CDIC values of 2‰ between source and mouth because of the preferential loss of the 12C isotope during degassing. Considering the findings of this study and the fact that carbonate lithology covers a significant part of the earth's surface, CO2 evasion from karst regions might contribute notably to the annual carbon dioxide release from global freshwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
419.
According to 73 snow samples collected in the southeast and southwest of Tibetan Plateau in January,2021,the characteristics of hydrogen and oxygen stable isotopes(δD and δ18O)fractionation in dry season and the influence of water vapor migration on the chemical composition change of snow profile were revealed by measuring the stable isotopes of hydrogen and oxygen and soluble inorganic ions in snow,and the relationship between stable isotopes of hydrogen and oxygen and climate and the composition and source of soluble inorganic ions were discussed. The results show that the local meteoric waterline of snowpack in the whole study area is δD=7. 86δ18O+11. 8(R2=0. 95),which is close to the Lhasa winter meteoric waterline,and the slope and inter⁃ cept of the meteoric waterline in the southeast are slightly lower than those in the southwest. δD and δ18O fluctu⁃ ates from -178. 11% to -68. 07% and -23. 80% to -9. 61%,respectively,and the d-excess values fluctuate from 11. 03% to 23. 49%,showing low values of δD and δ18O in winter,and high d-excess values. The surface layer is relatively enriched in heavy isotopes,and the isotope values are higher than those of the lower snow sam⁃ ples,and the water vapor migration inside the snow makes the slope of the relationship between δD and δ18O dif⁃ ferent. The concentration sequence of the main soluble inorganic ions is Ca2+>SO42->Na+>NO3->Cl->K+>Mg2+> NH4+,of which Ca2+(42. 47%),SO42-(23. 53%)accounted for the largest proportion of cation and anion,re⁃ spectively,and the average concentration of ions in the southeast was higher than that in the southwest. The re⁃ sults of principal component analysis show that terrigenous sources are the main source of ions in snow,and NH4+ and some NO3- are related to human activities. The backward air mass trajectory shows that the source of water vapor is related to the water vapor transport controlled by the upper-altitude westerly circulation,and most of the ions are terrestrial mineral dust carried by westerly winds in winter. © 2023 The Author(s).  相似文献   
420.
大气颗粒物(TSP和PM10)中Si、Al、Ca、Mg、K、Fe、Na等元素含量较高,是颗粒物源分析的指示性元素。目前分析大气颗粒物样品中无机元素的方法有中子活化分析法、X射线荧光光谱法、微波消解(或高压釜消解)电感耦合等离子体发射光谱法和电感耦合等离子体质谱法。本文建立了碱熔-电感耦合等离子体发射光谱法测定大气颗粒物样品中Si、Al、Ca、Mg、Fe、Ti、Ba、Sr、Zr等无机元素的分析方法,样品于镍坩埚中530~550℃灰化60 min后用NaOH融熔,水提取,再用2 mL 50%的HCl酸化,钠基体匹配消除干扰,解决了大气颗粒物滤膜样品中Si易产生的溶解不完全等问题,提高了Ti、Ba、Sr、Zr等主、次量元素测定的精密度和准确度。讨论了坩埚和熔剂的选择、灰化温度、灰化时间、酸度、干扰等影响因素。在选定条件下,测定结果相对误差(RE)﹤4%,相对标准偏差(RSD,n=12)﹤5%,检出限为0.0047~1.2 ng/g。方法所需设备简单,分析成本低,快速简便,精密度好,准确度高,适宜批量样品的测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号