首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   53篇
  国内免费   88篇
测绘学   3篇
大气科学   18篇
地球物理   82篇
地质学   157篇
海洋学   149篇
天文学   2篇
综合类   31篇
自然地理   44篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   7篇
  2020年   15篇
  2019年   17篇
  2018年   15篇
  2017年   18篇
  2016年   11篇
  2015年   22篇
  2014年   23篇
  2013年   27篇
  2012年   24篇
  2011年   29篇
  2010年   20篇
  2009年   27篇
  2008年   31篇
  2007年   22篇
  2006年   24篇
  2005年   20篇
  2004年   12篇
  2003年   12篇
  2002年   19篇
  2001年   10篇
  2000年   5篇
  1999年   16篇
  1998年   5篇
  1997年   2篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1982年   1篇
排序方式: 共有486条查询结果,搜索用时 62 毫秒
111.
The seasonal and interannual changes in surface nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) were recorded in the North Pacific (30–54°N) from 1995 to 2001. This study focuses on the region north of the subarctic boundary (∼40°N) where there was extensive monthly coverage of surface properties. The nutrient cycles showed large interannual variations in the eastern and western subarctic gyres. In the Alaska Gyre the seasonal depletion of nitrate (ΔNO3) increased from 8–14 μmol kg−1 in 1995–1999 to 21.5 μmol kg−1 in 2000. In the western subarctic the shifts were similar in amplitude but more frequent. The large ΔNO3 levels were associated with high silicate depletions, indicating enhanced diatom production. The seasonal DIC:NO3 drawdown ratios were elevated in the eastern and central subarctic due to calcification. In the western subarctic and the central Bering Sea calcification was significant only during 1997 and/or 1998, two El Ni?o years. Regional C/N stoichiometric molar ratios of 5.7 to 7.0 (>40°N) were determined based on the years with negligible or no calcification. The annual new production (NPa) based on ΔNO3 and these C/N ratios showed large interannual variations. NPa was usually higher in the western than in the eastern subarctic. However, values of 84 gC m−2yr−1 were found in the Alaska Gyre in 2000 which is similar to that in the most productive provinces of the northern North Pacific. There were also large increases in NPa around the Alaska Peninsula in 1997 and 1998. Finally, the net removal of carbon by the biological pump was estimated as 0.72 Gt C yr−1 in the North Pacific (>30°N). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
112.
We determined the range of the tidal variations in nutrient flux across the sediment–water interface and elucidated mechanisms of the flux variation in two estuarine intertidal flats (one sand, one mud) in northeastern Japan. Nutrient flux was measured using in situ light and dark chambers, which were incubated for 2 h, 2–6 times per day. Results showed that nutrient concentration in overlying water varied by tide and was also affected by sewage-treated water inflow. The nutrient fluxes responded quickly to the tidal variation in overlying water chemistry and the range of the variation in flux was as large as the seasonal-scale variation reported in previous studies. In the sand flat, salinity increase likely enhanced benthos respiration and led to increases in both O2 consumption and PO43− regeneration under low illumination, while benthic microalgae were likely to actively generate O2, uptake PO43− and suppress PO43− release under high illumination (>900 μmol photons m−2 s−1). Also in the mud flat, PO43− flux was related with O2 flux, although the range of temporal variation in PO43− flux was small. In both the flats, NH4+ flux was always governed by NH4+ concentration in the overlying water; either an increase in NH4+ uptake or a decrease in NH4+ release was observed as the NH4+ concentration rose due to inflow of river water or input of sewage-treated water. Although NO3 tended to be released in both tidal flats when low NO3 concentration seawater dominated, their relationship was likely to be weakened under conditions of low oxygen consumption and suppressed denitrification. It is likely that tidal variation in nutrient flux is governed more by the nutrient concentration than other factors, such as benthic biological processes, particularly in the case where nutrient concentration in the overlying water is relatively high and with wide amplitude.  相似文献   
113.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
114.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   
115.
李栋  赵敏  刘再华  陈波 《地学前缘》2022,29(3):155-166
河流输送到海洋的溶解无机碳(DIC)和有机碳(OC)受自然和人为双重因素的影响。了解DIC和OC的年龄、来源和转化,有助于掌握全球碳收支和提高现在以及未来自然和人类对河流碳循环影响的估算精度。本研究以普定岩溶水-碳循环试验场泉(地下水)-池(地表水)耦联系统为研究对象,利用双碳同位素(13C- 14C)方法,结合水生植物生长和传统水文地球化学特征,揭示了地下水-地表水系统中DIC和颗粒有机碳(POC)的来源及其转化机制。研究发现:(1)泉-池系统中DIC和POC的Δ14C具有相同的变化趋势,泉水中Δ14C值低于池水中Δ14C值,反映后者可能有“较年轻”的CO2的加入;(2)池水水化学和碳同位素变化由土地利用类型和池中水生植物共同控制;(3)池水中颗粒有机碳(POC)浓度明显高于泉水,且其Δ14C值表现出与沉水植物和DIC的一致性(表观年龄均为3 200900 a),说明池水POC主要源于池中水生植物光合作用利用了碳酸盐风化产生的老碳(DIC),使新形成的有机质在表观年龄上“偏老”;(4)池水水体内源有机碳对水体POC的贡献在75%以上,内源有机碳通量(以C计)在250 t·km-2·a-1至660 t·km-2·a-1之间,相对于其他土地利用类型,草地对应的地表水系统具有最大的内源有机碳占比和通量,指示了沉水植物控制型浅水水体初级生产对有机碳循环的重要作用。综上,我们认为在岩溶区通过土地利用调整来调控水生植物群落对于增加碳汇具有重要潜力。  相似文献   
116.
Inorganic nutrient contents of mucus released by Acropora corals and its utilization by heterotrophic bacteria at several different hour intervals in the coral mucus were investigated at a coral reef in Malaysia. The dissolved inorganic phosphate (DIP) concentration was 135‐fold higher than in the ambient seawater, probably due to inorganic P release from the coral gut cavity. We experimentally confirmed that heterotrophic bacteria rapidly (within 8 h) consumed ca. 80% of the initial concentration of DIP derived from coral mucus. High DIP concentration in coral mucus may enhance heterotrophic bacterial production and associated carbon flow in the microbial loop of reef ecosystems.  相似文献   
117.
刘晓雯 《岩矿测试》2010,29(5):580-584
实验室分析全过程的质量控制,其目的是将检测误差控制在容许限度内,以保证数据在给定的置信水平内达到质量要求。国土资源部天津矿产资源监督检测中心根据地质矿产行业标准DZ/T0130—2006《地质矿产实验室测试质量管理规范》、DD2008—01中国地质调查局标准《地下水污染调查评价规范》,并参照其他行业对水质分析质量控制要求,结合水质检测的具体情况,制定了适宜的地下水分析过程的质量控制体系,使实验室质量控制和质量管理具有良好的操作性和可行性,确保检测数据的可靠性。文章从5个方面提出地下水水质无机组分检测中质量控制方法,使水质无机组分的检测质量得到有效控制。  相似文献   
118.
研究了非水滴定法连续测定铀矿地质样品中的无机碳和有机碳的新方法,建立了优化的测定体系。无机碳回收率为99.4%~100.1%,有机碳的回收率为98.54%~103.1%,该法应用于生产,简便快速,准确可靠,结果令人满意。  相似文献   
119.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
120.
Incubation experiments are carried out to study the exchange rates of dissolved inorganic nutrients including silicate, phosphate, ammonium, nitrite, and nitrate (vSiO3-Si, vPO4-P, vNH4-N, vNO2-N and vNO3-N) at the sediment-water interface in the Jiaozhou Bay. Major factors influencing the exchange rates are discussed in detail, which include the dissolved inorganic nutrient concentrations in porewater (Cpw), water and clay contents, and grain size of the sediments (CH2O, Cclay and GSsed). The results may provide insight into the dynamics of nutrient transport and the environmental capacity of nutrients in Jiaozhou Bay, and should be beneficial to solving the problems caused by excessive nutrient input this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号