首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   166篇
  国内免费   142篇
测绘学   4篇
大气科学   2篇
地球物理   359篇
地质学   461篇
海洋学   32篇
天文学   1篇
综合类   22篇
自然地理   46篇
  2023年   5篇
  2022年   14篇
  2021年   34篇
  2020年   38篇
  2019年   43篇
  2018年   30篇
  2017年   32篇
  2016年   34篇
  2015年   36篇
  2014年   36篇
  2013年   76篇
  2012年   45篇
  2011年   39篇
  2010年   34篇
  2009年   36篇
  2008年   41篇
  2007年   50篇
  2006年   44篇
  2005年   41篇
  2004年   32篇
  2003年   17篇
  2002年   24篇
  2001年   25篇
  2000年   13篇
  1999年   12篇
  1998年   10篇
  1997年   14篇
  1996年   17篇
  1995年   15篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
排序方式: 共有927条查询结果,搜索用时 468 毫秒
91.
韩天雷 《吉林地质》2019,38(2):88-90
海绵城市是构建"尊重自然、顺序自然、保护自然"建设生态城市的新型理念。目的是实现低影响开发雨水控制与利用,雨水资源化管理,减轻城市内涝,达到水生态与城市发展平衡的可持续发展建设模式。本文主要提出了城市水文地质勘查在城市海绵建设中的必要性,及城市水文地质勘查如何开展和服务于海绵城市建设。  相似文献   
92.
何杰  辛文杰 《水科学进展》2019,30(6):823-833
港珠澳大桥沉管隧道E15管节基槽发生异常回淤,海底隧道沉管安装被迫中止。为查明E15管节基槽发生异常回淤的原因,先后开展了现场水文泥沙观测、遥感影像资料分析和数值模拟等多种技术手段。采用水沙数学模型反演了内伶仃岛上游采砂活动形成的浑水团在潮流作用下的扩散输移过程,沙源在数学模型中以面源形式模拟。模拟结果表明,采砂活动形成的浑水团在一个大潮期间的落潮过程中可输移扩散至基槽水域,其中E15—E27管节基槽日淤厚在采砂活动影响下将增加43.8%。数值模拟结果为查明E15管节基槽异常回淤的泥沙来源提供了佐证。E15管节以东基槽水域水沙环境复杂,天然淤积已经接近临界回淤允许值,基槽上游水域的采砂活动对沉管基槽回淤将带来不可控因素,采砂活动对周边水域产生的泥沙回淤影响应引起足够重视。  相似文献   
93.
总结分析了建筑工程肥槽回填土质量不良引发的常见工程问题,以及肥槽回填土不易施工密实的几个主要原因,并总结提出了各种肥槽回填土处理方法,以及它们主要的适用条件。  相似文献   
94.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   
95.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   
96.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   
97.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
98.
Baseflow is an important component of river or streamflow. It plays a vital role in water utilization and management. An improved Eckhardt recursive digital filter(IERDF) is proposed in this study. The key filter parameter and maximum baseflow index(BFImax) were estimated using the minimum smoothing method to improve baseflow estimation accuracy. The generally considered BFImax of 0.80, 0.50 and 0.25 according to the drainage basin's predominant geological characteristics often leads to significant errors in the regions that have complex subsurface and hydrologic conditions. The IERDF improved baseflow estimation accuracy by avoiding arbitrary parameter values. The proposed method was applied for baseflow separation in the upstream of Yitong River, a tributary of the Second Songhua River, and its performance was evaluated by comparing the results obtained using isotope-tracer data. The performance of IERDF was also compared with nine baseflow separation techniques belonging to filter, BFI and HYSEP methods. The IERDF was also applied for baseflow separation and calculation of rainfall infiltration recharge coefficient at different locations along the Second Songhua River's mainstream for the period 2000–2016. The results showed that the minimum smoothing method significantly improved BFImax estimation accuracy. The baseflow process line obtained using IEDRF method was consistent with that obtained using isotope 18 O. The IERDF estimated baseflow also showed stability and reliability when applied in the mainstream of the Second Songhua River. The BFI alone in the river showed an increase from the upstream to the downstream. The proportion of baseflow to total flow showed a decrease with time. The intra-annual variability of BFI was different at different locations of the river due to varying climatic conditions and subsurface characteristics. The highest BFI was observed at the middle reaches of the river in summer due to a water surplus from power generation. The research provided valuable information on baseflow characteristics and runoff mode determination, which can be used for water resources assessment and optimization of economic activity distribution in the region.  相似文献   
99.
The three-dimensional problem of isolation of vibration by a row of piles is studied numerically on the basis of a model replacing the row of piles by an effective trench in order to reduce the modelling complexity. The analysis is accomplished with the aid of an advanced frequency domain boundary element method, which is used for both the infilled trench and the soil medium in conjunction with a coupling procedure based on enforcement of equilibrium and compatibility at the trench–soil interface. Linear elastic or viscoelastic material behaviour is assumed for both the piles and the soil. The piles can be tubular or solid and have circular or square cross-section. The vibration source is a vertical force, harmonically varying with time, and the row of piles acts as a passive wave barrier. The effective trench model is constructed by invoking well known homogenization techniques used in the mechanics of fibre-reinforced composite materials, and its accuracy is compared against a rigorous boundary element analysis modelling each pile separately in full contact with the soil medium. On the basis of the effective trench model, the screening effectiveness of a row of piles is studied through parametric studies.  相似文献   
100.
雨水入渗对非饱和土坡稳定性影响的参数研究   总被引:57,自引:1,他引:56  
很多国家和地区的斜坡失稳与雨水入渗有密切关系。通过参数分析研究可以深化对这种关系的认识和理解,因而对滑坡灾害的预测和预防有重要意义。针对香港地区一种典型非饱和土斜坡,用有限元法模拟雨水入渗引起的暂态渗流场,然后将计算得到的暂态孔隙水压力分布用于斜坡的极限平衡分析。计算中采用延伸的摩尔-库伦破坏准则以便考虑基质吸力对抗剪强度的贡献,研究了降雨特征、水文地质条件及坡面防渗处理等因素对暂态渗流场和斜坡安全因数的影响。数值模拟结果表明:降雨强度、降雨历时和雨型对暂态渗流场及斜坡稳定性有明显的影响;土体的渗透系数,尤其是渗透系数各向异性的影响特别显著;斜坡中相对隔水层的存在以及斜坡防渗护面的效果等因素的影响均不容忽视。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号