首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   166篇
  国内免费   142篇
测绘学   4篇
大气科学   2篇
地球物理   359篇
地质学   461篇
海洋学   32篇
天文学   1篇
综合类   22篇
自然地理   46篇
  2023年   5篇
  2022年   14篇
  2021年   34篇
  2020年   38篇
  2019年   43篇
  2018年   30篇
  2017年   32篇
  2016年   34篇
  2015年   36篇
  2014年   36篇
  2013年   76篇
  2012年   45篇
  2011年   39篇
  2010年   34篇
  2009年   36篇
  2008年   41篇
  2007年   50篇
  2006年   44篇
  2005年   41篇
  2004年   32篇
  2003年   17篇
  2002年   24篇
  2001年   25篇
  2000年   13篇
  1999年   12篇
  1998年   10篇
  1997年   14篇
  1996年   17篇
  1995年   15篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
排序方式: 共有927条查询结果,搜索用时 218 毫秒
31.
沟槽内海底管道的水动力特性研究   总被引:1,自引:0,他引:1  
基于水力模型实验,引入相对沟形系数αr,获得了以αr为表征的相对水动力系数与KC数的关系;对于浅沟而言,这种关系较有规律性。根据所设计沟形的αr值和所选定的KC值,应用本文结果,可以方便地判断其力折减程度和掩护效果  相似文献   
32.
石家庄地面水回渗地下过程的氮行为影响试验研究   总被引:1,自引:0,他引:1  
石家庄是我国北方地下水位下降较大的城市之一,利用其毗邻滹沱河宽阔河滩,地面水可直接入渗补给地下水的有利水文地质条件,实施地面水回渗地下工程,将具有现实意义.为探索地面水回渗后的水质变化,该文针对地面水在回渗过程中对水质起限制性影响的氮行为作用进行了模拟试验研究.结果显示,利用2 m厚的滹沱河细砂土及与粘土按一定比例的混合砂土层,可对间歇式实施地面水回渗中的铵氮组分形成一定容量的截留去除,并且该截留量又在随回渗次数的增加而缓慢下降,当采用人工增加环境碱度及湿度的办法后可消除这种下降.同时,还显示对回渗水中硝酸氮的去除率不高,但若采用人工添加乙醇碳源和接种优势脱氮微生物菌种方法,硝酸氮的去除率将会得到较大提高.  相似文献   
33.
山西交城断裂带西张探槽全新世古地震研究   总被引:10,自引:3,他引:7  
西张探槽①位于山西太原市西北10km,沿交城断裂带北段NNW方向高4.6m的低陡坎前缘开挖。探槽长108m,宽8m,深10m,揭露18层地层。探槽上部地层为亚砂土,探槽内断层下降盘的上部地层为一套砾石层,下部地层为一套褐色垆土与亚砂土互层,断层的上升盘地层以亚砂土为主夹砾石层。探槽揭露出3条断面,断面的上断点距地表1.5m,断错的最新地层距今(3.74±0.06)ka。探槽揭示出断面、地层断错、崩积楔、地层倾斜等现象。由探槽揭露出的地层与断层的关系可知早全新世以来交城断裂带曾发生3次断层活动事件,其时间分别为距今(3.74±0.06)~(3.06±0.26)ka、(8.35±0.09)~(3.74±0.06)ka与(10.66±0.85)~(8.35±0.09)ka,具有2.6~3.6ka的强震重复间隔;3次同事件最小垂直位移分别为3.0m、2.5m及3.2m。西张探槽的意义在于揭示了历史上未有强震记载的晋中盆地几千年前有过多次强震活动。西张探槽获得的交城断裂带全新世古地震活动的依据,对评价太原市未来的强震危险性具有重要意义  相似文献   
34.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   
35.
The primary focus in this work is on proposing a methodology for the assessment of stability of natural/engineered slopes in clayey soils subjected to water infiltration. In natural deposits of fine‐grained soils, the presence of water in the vicinity of minerals results in an interparticle bonding. This effect cannot be easily quantified as it involves complex chemical interactions at the micromechanical level. Here, the evolution of strength properties, including the apparent cohesion resulting from initial suction at the irreducible fluid saturation, is described by employing the framework of chemoplasticity. The paper provides first the formulation of the problem; this involves specification of the constitutive relation, development of an implicit return mapping scheme, and the outline of a coupled transient formulation. The framework is then applied to examine the stability of a slope subjected to a prolonged period of intensive rainfall. It is shown that the water infiltration may trigger the loss of stability resulting from the degradation of material properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
36.
Sediment infiltration can clog salmon nests and reduce egg survival. As a countermeasure, environmental managers often deploy infiltration traps to monitor sediment infiltration. Traps provide a repeatable means of measuring infiltration and enable comparisons to be made between sites. Results from infiltration rates measured with traps have also been used to estimate infilling rates into salmon nests. Application of these data is questionable, as the composition of the bed and the amount of fine sediment within the bed is known to affect infiltration rates. Thus, infiltration rates measured with infiltration traps may differ from the infiltration rates occurring in redd and riffle gravels. To examine how relationships between sediment infiltration rates varied between four watersheds, we continuously monitored suspended sediment transport, shear stress and infiltration rates at four sites over 5 months. We also compared infiltration rates measured with infiltration traps with changes in the hydraulic conductivity and subsurface grain size distribution of adjacent artificially constructed salmon nests and natural riffle gravels. Among the four watersheds, clear differences in sediment infiltration rates were observed. The differences correlated with the subsurface silt content but no strong relationship existed between land‐use or basin physiography/geology. Despite observing an average of 30 kg m−2 of sediment finer than 2 mm being deposited in the infiltration traps during the study, no change in redd or riffle substrate was observed. If the deposition rates measured with the traps reflect the processes in redds, enough sediment would have been deposited to inhibit egg emergence. However, no reduction in egg survival to the eyed stage was observed. In summary, our results show that infiltration traps with clean gravels can be used to detect intersite differences in sediment transport regimes. Extrapolations of sediment infiltration rates measured with such collectors to estimate infiltration rates in redds or riffles is, however, flawed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
37.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
38.
Desert pavements (DPs) are critical for maintaining ecological stability and promoting near-surface hydrological cycling in arid regions. However, few studies have focused on eco-hydrological processes of DPs in the ecological systems of fluvial fans. Although DP surfaces appear to be barren and flat, we found that the surfaces are characterized by surface mosaic patterns of desert pavement (mosaic DP) and bare ground (mosaic BG). We investigated the effects of mosaic DP on water infiltration and vegetation distribution at six sites in fluvial fans (one on a hillside and five within the sectors of fans) along a southwest belt transect in northern Linze County, in the central Hexi Corridor (China). We found significant differences in mosaic DP between the hillside and sector sites in terms of pavement thickness and vesicular horizon thickness (Av thickness), particle composition, and bulk density, although significant differences were absent for mass soil water content, gravel coverage, and surface gravel size. The mosaic DP inhibited water infiltration by the pavement layer, where the sorptivity (S), initial infiltration rate (iint), steady-state infiltration rate (isat) and infiltration time (T) averaged 1.19 cm/min-0.5, 0.64 cm/min, 0.13 cm/min and 12.76 min, respectively. Where the pavement layer was scalped, the S, iint, and isat increased by 0.27 cm/min-0.5, 0.52 cm/min, and 0.40 cm/min, respectively, and the T reduced by 7.42 min. Water infiltration was mainly controlled by the pavement layer thickness (+), Av thickness (−), surface gravel coverage (−), fine earth (+) and fine gravel (−) in the pavement layer. The DP surfaces only had a sparse covering of shrubs, but an abundance of herbs. Few shrubs were present on the mosaic DP, but a greater number of shrubs and herbs grew on the mosaic BG. It can be concluded that DPs can maintain vegetation stability for different surface mosaic patterns. This study deepens our understanding of the eco-hydrological cycle of DP landscapes in arid regions.  相似文献   
39.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
40.
Abstract

Abstract The role of accuracy in the representation of infiltration on the effectiveness of real-time flood forecasting models was investigated. A simple semi-distributed model of conceptual type with adaptive estimate of hydraulic characteristics included in the infiltration component was selected. Infiltration was described by a very accurate approach recently formulated for complex rainfall patterns, or alternatively through a simpler formulation known as an extension of the classical time compression approximation. The results indicated that, for situations involving a significant rainfall variability in space, the inaccuracy in the representation of infiltration cannot be corrected by the adaptive component of the rainfall–runoff model. A preliminary analysis of the role of an approximation of saturated hydraulic conductivity to be used in each homogeneous area of the semi-distributed model used both in non-adaptive version and in real-time is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号