首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1150篇
  免费   178篇
  国内免费   776篇
测绘学   4篇
大气科学   4篇
地球物理   99篇
地质学   1897篇
海洋学   30篇
综合类   55篇
自然地理   15篇
  2024年   9篇
  2023年   21篇
  2022年   32篇
  2021年   24篇
  2020年   37篇
  2019年   45篇
  2018年   54篇
  2017年   68篇
  2016年   61篇
  2015年   84篇
  2014年   69篇
  2013年   82篇
  2012年   94篇
  2011年   114篇
  2010年   91篇
  2009年   107篇
  2008年   98篇
  2007年   121篇
  2006年   95篇
  2005年   76篇
  2004年   84篇
  2003年   77篇
  2002年   57篇
  2001年   70篇
  2000年   71篇
  1999年   41篇
  1998年   57篇
  1997年   46篇
  1996年   43篇
  1995年   37篇
  1994年   29篇
  1993年   21篇
  1992年   25篇
  1991年   29篇
  1990年   9篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
排序方式: 共有2104条查询结果,搜索用时 328 毫秒
911.
大别山麻粒岩包体的氧同位素研究   总被引:10,自引:4,他引:6  
肖益林  郑永飞 《地质论评》1998,44(2):181-187
对北大别变质杂岩中的麻粒岩包体进行详细的氧同位素地球化学研究,发现其全岩δ~(18)O值偏低,为3.3‰~4.4‰。在麻粒岩相变质条件下,大别山麻粒岩包体的共存矿物对之间达到并保存了氧同位素平衡,后期退变质作用未明显破坏这种平衡。由矿物氧同位素地质测温得到的顶峰变质温度800~875C,与一般麻粒岩相变质温度相吻合。在变质作用之前或顶峰变质作用过程中,大别山麻粒岩包体的原岩曾与一δ~(18)O值低于3‰的外来流体发生了高温水—岩交换作用,并且这种交换作用在一定范围内是相对均一的。  相似文献   
912.
湖北英山刚玉矿物学研究   总被引:1,自引:0,他引:1  
吴瑞华 《地质论评》1998,44(6):627-633
湖北英山刚玉矿床是本世纪五、六十年代发现的,由于多种原因未能对其进行研究和开发利用。本文系统地研究了英山刚玉矿物学特征,测定了各种物性和参数,观测了刚玉包裹体;并利用电子探针、粉晶X射线分析、可见光谱等现代测试手段,较详细地分析了刚玉的化学成分、晶体结构及光谱特征,并进行了热处理实验研究。指出湖北英山产出的刚玉颗粒大,晶形好,颜色较浅,可用热处理的方法改成蓝色、黄色、肉红色,但由于裂隙发育,包裹体  相似文献   
913.
Mensah  E 《世界地质》1998,17(3):32-35
加纳西南部的伟晶岩区沿大西洋海岸线从开普口斯特市经索特旁德镇到门凯德兹镇最后到威尼巴镇,总共延伸上百千米,这些伟晶岩主要产于加纳毕雷绵岩系之中,形成了依镖尼造山作用(约2.0Ga)的减弱期,与侵入了毕雷绵岩系中的开普口斯特花岗质杂岩(CCGC)密切相关,CCGC杂岩主要由二云母花岗岩,变闪长岩和细晶岩组成。其中花岗岩为铝过饱和度的I型花岗岩,富碱质(Na=2%~4.2%,K=2.3%~5.8%),  相似文献   
914.
The Jinman deposit is a Ag-bearing copper vein deposit located at the north margin of the Lanping-Simao back-arc basin in West Yunnan. Systematic studies of fluid inclusions and stable isotopes are presented in this paper. The filling-replacement stage and the boiling-exhalative precipitation stage of mineralization took place atT 1 = 140–280°3 andT 2 = 94–204°C under pressure of (600 – 1200) x 105 Pa. The salinity of ore-forming solutions ranges from 5 wt% –20.8 wt% (NaCl). Sulphide δ34S(CDT) values are in the range of -9.6%.– +11.03%. with a range of 22. 66%. showing an apparent “pagoda”-shaped distribution in histogram. Meanwhile, the δ34S values of the various sulphides are consistent with the characters of isotope equilibrium fractionation, i.e., δ34 SPy34SCp34SBn. The TS/TOC ratios of the ores are widely variable between 0.16 and 5.54 with no correlation of any kind can be established. According to the model of Ohmoto, the oxidation-reduction ratios of sulfur species in ore-forming solutions at the two mineralization stages were calculated to be R′1 = 2.16 x 10-17 and R′2 = 1.55 x 104. δ13Coo2(PDB) values obtained from fluid inclusions in calcite and quartz are between -8.12%.-3.18%., averaging -5.26%., which are comparable with the isotopic composition of mantle-derived CO2. Inclusions in quartz yield δ13CCH4 (PEB) between -32. 11%. and -22.04%. (averaging -26.69%.), similar to that of methane in modern geothermal gases. For the ore-forming solutions, δ18 OH2O (SMOW) values are between -10.57%. and +9.77%. and δDH2O (SMOW) are between -51%. and -135%. Considering the effect of isotope exchange during water-rock reactions, most of the data are plotted along or close to the line defined by the reaction of meteoric water with clastic rocks, while a small part of the points fall near the reaction line of magmatic water with clastic rocks. In δ13C vs. δ18O diagram, the ore-forming solutions are plotted for the most part into the mixing area between the meteoric fluid and the deep-seated fluid and partially on the mixing line of P = 1. This project was founded by the “Eighth Five-Year Plan Period” State Key Program (85–901) and the Open Lab. of Ore Deposit Geochemistry, Chinese Academy of Sciences.  相似文献   
915.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   
916.
The chemical variation of the Earth’s mantle rocks has been interpreted to reflect multiple episodes of partial melting. With the increasing of melt generation and extraction, the readily molten minerals and incompatible elements decrease in the residual mantle peridotite. The present-day gladiate of the Earth, however, cannot cause mantle batch melting[1], nor 40% partial melting that allows pyroxenes to be completely dissolved into melt and forms dunite[2,3]. Recent studies show that mantl…  相似文献   
917.
南黄海4个沉积岩芯的热释光测年及地层划分   总被引:3,自引:0,他引:3  
本文利用热释光技术对南黄海4个柱状岩芯样品进行测年,结果与其他方法所获年代相符甚好;并综合岩性、古地磁和~(14)C等资料对该海区第四纪地层进行划分。对此,初步确定其全新世地层厚度变化于十几厘米至几米之间。  相似文献   
918.
冲绳海槽碱性玄武岩浆的起源及演化   总被引:1,自引:1,他引:1  
利用电子探针对冲绳海槽133站位玄武岩的斑晶矿物、基质以及斑晶矿物中关晶石包体和岩浆包裹体作了化学主成分分析,结果表明,该站位玄武岩属橄榄玄武岩,岩石中斑晶矿物由培长石、普通辉石、贵橄榄石和磁铁矿组成,尚见有少量外来的脉石英碎块,基质成分由拉长石微晶和玻璃组成。培长石和贵橄榄石中含有玻璃质岩浆包裹体和铬镁尖晶石或铬镁铁尖晶石包体。尖晶石的化学成分证明它是地幔部分熔融成因的。岩浆包裹体代表了一种原生的碱性橄榄玄武岩浆,其化学成分相当于橄榄辉长岩。该站位的玄武岩浆起源于上地幔尖晶二辉橄榄岩的部分熔融,并沿着“碱性橄榄玄武岩浆-粗面玄武岩浆-玄武质粗面岩浆-粗面岩浆”方向演化,每一阶段的岩浆在上升过程中都不同程度地受到地壳物质的同化和混染作用。  相似文献   
919.
冲绳海槽浮岩中岩浆包裹体岩石化学成分特征   总被引:7,自引:2,他引:7  
系统地分析了冲绳海槽酸性浮岸中玻璃质岩浆包裹体的岩石化学成分,探讨了包裹体的岩石化学成分特征及其在岩浆起源及结晶演化过程中的指示意义,并结合前期及前人工作讨论了冲绳海槽不同岩石类型之间的成因联系及演化关系。结果表明,斑晶结晶时岩浆熔体为钙碱性英安质或流纹质岩浆,是来自地幔的拉斑玄武质岩浆充分结晶分异作用的产物。尽管各斑晶矿物中玻璃质岩浆包裹体的化学成分有所差异,但根据包裹体的岩石化学成分特征可以断定包裹体所代表的岩浆具有同源性,其差异只是反映了岩浆结晶演化的不同阶段或不同矿物结晶期,为进一步详细研究浮岩岩浆的结晶演化过程提供了最直接的资料。对比冲绳海槽酸性浮岩与玄武岩等不同岩石类型的岩石化学特征,可以证明这些岩石类型之间存在着密切的成因联系,包括同源性与继承性,它们分别是岩浆作用不同阶段的产物。另外,包裹体的成分主要取决于包裹体所在斑晶矿物的种类与成分,分析中未发现岩石化学性质明显不同的岩浆包裹体共存的现象,也没有在中酸性矿物中发现基性玻璃质岩浆包裹体,因此可以推断基本不存在不同性质的岩浆之间的直接混合作用。  相似文献   
920.
莱阳凹陷烃源岩中的石油包裹体及油气初次运移研究   总被引:2,自引:0,他引:2  
莱阳凹陷莱孔2井下白垩统莱阳组水南段暗色泥岩为富含藻类体和无定形体的优质烃源岩。用高倍荧光显微镜观察,在这些暗色泥岩的砂质碎屑矿物和自生矿物中,发现丰富的微石油包裹体群。这些石油包裹体的均一温度较集中,为78~82℃。根据莱孔2井水南段古地温演化历史,进一步推算出烃源岩中这些石油包裹体的形成时间为74~77Ma。根据PVTsim模拟计算,这些石油包裹体的捕获压力为305~307bar。莱阳凹陷水南段暗色泥岩石油包裹体的发现,说明该凹陷在第三纪抬升以前水南段暗色泥岩曾经历过深埋与生排烃作用,为本区重要的烃源岩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号