首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   223篇
  国内免费   117篇
测绘学   21篇
大气科学   73篇
地球物理   414篇
地质学   410篇
海洋学   77篇
天文学   4篇
综合类   26篇
自然地理   163篇
  2024年   6篇
  2023年   6篇
  2022年   18篇
  2021年   45篇
  2020年   38篇
  2019年   45篇
  2018年   30篇
  2017年   54篇
  2016年   39篇
  2015年   40篇
  2014年   74篇
  2013年   87篇
  2012年   45篇
  2011年   51篇
  2010年   40篇
  2009年   47篇
  2008年   55篇
  2007年   55篇
  2006年   57篇
  2005年   59篇
  2004年   52篇
  2003年   32篇
  2002年   25篇
  2001年   22篇
  2000年   23篇
  1999年   16篇
  1998年   21篇
  1997年   13篇
  1996年   10篇
  1995年   18篇
  1994年   16篇
  1993年   6篇
  1992年   13篇
  1991年   9篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1188条查询结果,搜索用时 375 毫秒
721.
Recent research has indicated that Sierra Nevada meadows are hydrologically more complex than previously considered. Improved understanding of the effects of aquifer parameters and climate change on water resources in and downstream of meadows is critically needed to effectively manage mountain meadows for ecosystem services and watershed contributions. This research investigates the roles of bedrock geometry, saturated hydraulic conductivity, and meadow gradient in affecting groundwater storage dynamics and surface‐water outflows in site‐scale high‐elevation meadows. Under current and projected lower snowpack conditions, we modeled groundwater flow in representative high‐elevation meadows considering 2 conceptual aquifer thickness models: uniform and variable thickness. Spatially, variable aquifer thicknesses interpreted from bedrock depths (0–28 m) were identified from a high‐resolution ground‐penetrating radar survey conducted at Tuolumne Meadows, CA. Our interpreted bedrock surface indicated several buried U‐shaped valleys including a buried ridge that separates 2 U‐shaped valleys. Groundwater flow simulations show that an increase in meadow gradient and hydraulic conductivity led to a decrease in seasonal storage and an increase in surface‐water outflow. However, models with varying bedrock geometries change the magnitude and timing of these processes. Uniform thickness models overestimated storage at the model edges and resulted in higher projected volumes of water being released to streams earlier than previously observed.  相似文献   
722.
水文集合预报是一种既可以给出确定性预报值,又能提供预报值的不确定性信息的概率预报方法。简述了水文集合预报试验(Hydrologic Ensemble Prediction Experiment,HEPEX)国际计划的主要研究内容,回顾了HEPEX研究进展,分析了对水文预报发展有重要意义的3个HEPEX前沿研究:降尺度研究、集合预报系统研究以及不确定性研究。研究表明,动力-统计降尺度法和高分辨率"单一"模式及低分辨率集合相结合是HEPEX未来研究的方向。  相似文献   
723.
Abstract

New zircon laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectroscopy U–Pb ages, and Hf isotope and whole-rock geochemical data are reported for Mesozoic igneous rocks from the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China, in order to document the petrogenesis of the igneous rocks and reconstruct the early Mesozoic tectonic setting of the region. Zircons from five representative igneous rocks are euhedral–subhedral and display oscillatory growth zoning or striped absorption in cathodoluminescence images, suggesting a magmatic origin. The dating results indicate that granite, gabbro, and rhyolite from the eastern Songnen–Zhangguangcai Range Massif formed during Late Triassic (204–211 Ma). The Late Triassic granitoids and rhyolites have an affinity to A-type granites or rhyolites. Their zircon εHf(t) values and Hf two-stage model ages range from –3.8 to +3.8 and from 999 to 1485 Ma, respectively, indicating that their primary melts were derived from the partial melting of the Meso-Proterozoic crust. The geochemistry of coeval gabbros, which reflects primary magma composition, shows a significant large ion lithophile element (e.g. Ba and Sr) enrichment and high field strength element (i.e. Zr, Hf, Nb, Ta, and Ti) depletion. Based on zircon εHf(t) values (–4.2 to +2.8) and Hf single-stage model ages (746–1031 Ma), we conclude that the mafic magma is the product of partial melting of lithospheric mantle that was metasomatically enriched by fluids derived from the subducted oceanic crust. The Late Triassic magmatism along the eastern margin of the Eurasian continent has bimodal magma compositions, indicating an extensional setting after the final closure of the Palaeo-Asian Ocean rather than being related to subduction of the Palaeo-Pacific Plate beneath the Eurasian continent. The occurrence of Late Triassic igneous rocks on the eastern side of the Mudanjiang Fault suggests that this fault does not represent the suture zone between the Songnen–Zhangguangcai Range and Jiamusi massifs.  相似文献   
724.
Abstract

In the Rhône Delta, numerous paleoenvironmental indicators coming from geomorphology, sedimentology, paleoecology and archeology provide evidences of remarkable hydrological regime change at the beginning of the Roman Antiquity. A significant reinforcement in the Rhône River's competence is indicated by the increase in grain size of the sediments deposited in the floodplain, within the immediate proximity of the channel. Increase in the fluvial sediment yield is indicated by the increase in rate of sedimentation in the floodplain. Increase in water levels is indicated by the deposition of hydromorphous facies, the development of hydrophytic species, and the decrease in activity of terrestrial lombricoids in the floodplain. Numerous crevasse splays were formed by short-term avulsions of the Rhône River between the first century BC and the AD first century. Their frequency is related to an increase of Rhône River paleodischarge, which makes the channel network incapable of evacuating large volumes of water brought in by the river. The littoral zone experienced a phase of progradation between the AD 1st and the 3rd centuries, in relation to the increase of terrigenous deposits coming from the Rhône of Ulmet. The increase in solid discharge, in the flood-dominated regime (FDR) context, can be related to the overall increase in detrital output from the catchment. The Rhône Delta rather appears in phase with the northern Alps and Massif Central from the 1st century BC to the AD 1st century. The FDR at the beginning of the Christian era contrasts with the drought-dominated regime (DDR) and the reduction of torrential rainfall in the Mediterranean and south Alpine areas. These observations allow to confirm the hydroclimatic limit which could distinguish the southern part of the catchment (Provence, Durancian Alps) from the rest of the Rhône basin. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   
725.
Abstract

Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Burn, D. H., et al., 2012 Whitfield, P.H. 2012. Reference hydrologic networks, I. The status of national reference hydrologic networks for detecting trends and future directions. Hydrological Sciences Journal, 57(8) this issue[Taylor & Francis Online] [Google Scholar]. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrological Sciences Journal, 57 (8), 1580–1593.  相似文献   
726.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   
727.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   
728.
ABSTRACT

This paper describes a new approach to fill missing data in hydrologic series. Based on a multiple-order autoregressive model, our algorithm represents the random term with an empirical distribution function that includes different parameters for the low, medium and high ranges of the modelled hydrologic variable. The algorithm involves a corrective mechanism that preserves the original statistical distribution of the series that are filled, while also eliminating the possibility of obtaining negative values for low flows. The algorithm requires multiple correlated hydrologic time series with sufficient data to permit accurate calculation of their statistical properties. It ensures that both the original statistical dependence among the data series and the statistical distribution functions will be preserved after the missing data had been filled. The model has been tested using 15 streamflow series in the Upper Bow River watershed in Alberta, Canada.  相似文献   
729.
Watershed models that combine hydrology and water quality are being widely used in integrated watershed management for the determination of best water management practices. In this study, the hydrology of the Lower Porsuk Stream Watershed in Turkey has been modelled with the Soil and Water Assessment Tool to determine optimal water management strategies. The calibration and the validation process have been accomplished using data from two monitoring stations. The model has been run for the 1978–2009 period, and while the 1998–2004 period has been used for calibration, the validation has spanned the whole period. The SWATCup calibration and uncertainty program has been used for this purpose. No significant differences have been detected among different iteration numbers in the calibration period. The monthly Nash–Sutcliffe and R2 performance indicators for the upstream Esenkara station have been 0.74 and 0.88, respectively, for the calibration period, and 0.87 and 0.87, respectively, for the validation period. The Kiranharmani station, which is located close to the watershed outlet, has shown values of 0.59 and 0.72, respectively, for the calibration period, and 0.44 and 0.56, respectively, for the validation period. There are uncertainties in the abstracted irrigation and groundwater quantities that have reflected in the results in the Kiranharmani station, which is more affected as it lies downstream of the irrigation areas. The effects of different irrigation practices on the flow regime have been also investigated. A scenario has been implemented in which drip irrigation wholly replaces conventional furrow and sprinkler irrigation. The scenario has shown increases in stream flows by 87% for the whole year. The adoption of more efficient irrigation practices thus results in reducing the water stress induced by irrigation demands. With this study, a modelling framework has been founded to aid water management applications in the Lower Porsuk Stream Watershed by generating scenarios for best management practices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
730.
Abstract

A river flow regime describes an average seasonal behaviour of flow and reflects the climatic and physiographic conditions in a basin. Differences in the regularity (stability) of the seasonal patterns reflect different dimensionality of the flow regimes, which can change subject to changes in climate conditions. The empirical orthogonal functions (EOF) approach can be used to describe the intrinsic dimension of river flow regimes and is also an adopted method for reducing the phase space in connection to climate change studies, especially in studies of nonlinear dynamic systems with preferred states. A large data set of monthly river flow for the Nordic countries has been investigated in the phase space reduced to the first few amplitude functions to trace a possible signature of climate change on the seasonal flow patterns. The probability density functions (PDF) of the weight coefficients and their possible change over time were used as an indicator of climate change. Two preferred states were identified connected to stable snowmelt-fed and rainfed flow regimes. The results indicate changes in the PDF patterns with time towards higher frequencies of rainfed regime types. The dynamics of seasonal patterns studied in terms of PDF renders it an adequate and convenient characterization, helping to avoid bias connected to flow regime classifications as well as uncertainties inferred by a modelling approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号