首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   934篇
  免费   45篇
  国内免费   39篇
测绘学   1篇
大气科学   2篇
地球物理   72篇
地质学   96篇
海洋学   150篇
天文学   681篇
综合类   8篇
自然地理   8篇
  2024年   5篇
  2023年   5篇
  2022年   7篇
  2021年   6篇
  2020年   12篇
  2019年   11篇
  2018年   14篇
  2017年   19篇
  2016年   6篇
  2015年   11篇
  2014年   16篇
  2013年   23篇
  2012年   13篇
  2011年   25篇
  2010年   18篇
  2009年   86篇
  2008年   59篇
  2007年   87篇
  2006年   91篇
  2005年   63篇
  2004年   75篇
  2003年   64篇
  2002年   55篇
  2001年   65篇
  2000年   42篇
  1999年   39篇
  1998年   66篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
排序方式: 共有1018条查询结果,搜索用时 15 毫秒
51.
本研究以崇明东滩2015年4月实测潮间带水沙数据为基础,分析了潮沟、盐沼及光滩的水沙特征,重点研究了潮沟系统及邻近潮滩潮周期内悬沙通量情况。结果表明:(1)潮沟表层沉积物比潮滩细,二者平均中值粒径分别为21.7 μm和33.0 μm,悬沙粒径由海向陆逐渐变小;(2)大、小潮沟潮周期内潮流均以往复流为主,垂向平均流速分别为15.4 cm/s和34.6 cm/s;盐沼界和光滩则以旋转流为主,平均流速分别为11.3 cm/s和28.9 cm/s;(3)潮沟中的高悬沙浓度出现在涨潮初期,最大可达7.5 kg/m3,而潮滩高悬沙浓度则出现在潮落潮中期和高水位时刻;大、小潮沟和盐沼界站涨潮阶段平均悬沙浓度大于落潮阶段,光滩站则相反。潮沟悬沙主要来自邻近水域,而潮滩悬沙则与滩面表层沉积物密切相关;(4)潮沟在潮周期内净输沙方向均指向滩地,大潮沟潮周期单宽净输沙量可达4.0 t/m;盐沼界处垂直岸线和沿岸输沙强度相近,净输沙由海向陆,潮周期离岸输沙强度为1.0 t/m;光滩沿岸输沙强度远大于垂直岸线输沙,光滩净输沙由陆向海。研究揭示了潮间带潮沟系统的强供沙能力以及研究区域光滩冲蚀,盐沼植被带淤积的动力地貌过程。  相似文献   
52.
据钦州湾2007年1—2月的实测潮流,结合径流、潮汐等资料,经水动力和港湾地形综合分析揭示:钦州湾的潮流深槽是潮流作用于葫芦形复式港湾的必然产物,是在内湾纳潮蓄能、湾颈狭道强流、颈口岛礁分流喷射冲刷而成的。通过对潮流流路和强度的分析,对潮流深槽的稳定性进行了探讨;进而通过湾颈流速-内湾纳潮关系计算,给出了潮流深槽稳定的临界条件。  相似文献   
53.
运用三维海洋模型FVCOM(Finite-Volume Coastal Ocean Model),采用有限体积计算方法,引入了"干、湿"判断,建立了天海达工程附近海域的三维潮流和泥沙输移模型,预测分析了天海达工程建设后对附近海域水动力和地形冲淤的影响。结果表明工程建设后对其西侧潮流影响较大,东侧与南侧影响较小,且随着距离的增加,影响程度减小,在距离工程1200 m以外海域流速相对变化值大约在8%以内;工程建设前后,静风条件下,工程附近海域地形变化趋势基本一致,但由于岸线的改变,工程东西两侧500m范围内近岸海域淤积程度增大,淤积增大幅度范围为0.05~0.1 cm/a。  相似文献   
54.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
55.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   
56.
We analytically generalize the well-known solution of steady supersonic spherically symmetric gas accretion onto a star (Bondi 1952) for an iron atmosphere with completely degenerate electrons with an arbitrary degree of relativity. This solution is used for typical physical conditions in the vicinity of protoneutron stars produced by gravitational collapse with masses M 0=(1.4?1.8)M and over a wide range of nonzero “iron gas” densities at infinity, ρ=(104?5×106)g cm?3. Under these conditions, we determine all accretion parameters, including the accretion rate, whose value is ~(10?50)M s?1 at M 0=1.8M (it is a factor of 1.7 lower for M 0=1.4M , because the accretion rate is exactly ∝M 0 2 ). We take into account the effect of accreting-gas rotation in a quasi-one-dimensional approximation, which has generally proved to be marginal with respect to the accretion rate.  相似文献   
57.
We report on calculations of the on-shore run-up of waves that might be generated by the impact of subkilometre asteroids into the deep ocean. The calculations were done with the COULWAVE code, which models the propagation and shore-interaction of non-linear moderate- to long-wavelength waves  ( kh < π)  using the extended Boussinesq approximation. We carried out run-up calculations for several different situations: (1) laboratory-scale monochromatic wave trains onto simple slopes; (2) 10–100 m monochromatic wave trains onto simple slopes; (3) 10–100 m monochromatic wave trains onto a compound slope representing a typical bathymetric profile of the Pacific coast of North America; (4) time-variable scaled trains generated by the collapse of an impact cavity in deep water onto simple slopes and (5) full-amplitude trains onto the Pacific coast profile. For the last case, we also investigated the effects of bottom friction on the run-up. For all cases, we compare our results with the so-called 'Irribaren scaling': The relative run-up   R / H 0=ξ= s ( H 0/ L 0)−1/2  , where the run-up is   R , H 0  is the deep-water waveheight, L 0 is the deep-water wavelength, s is the slope and ξ is a dimensionless quantity known as the Irribaren number. Our results suggest that Irribaren scaling breaks down for shallow slopes   s ≤ 0.01  when  ξ < 0.1 − 0.2  , below which   R / H 0  is approximately constant. This regime corresponds to steep waves and very shallow slopes, which are the most relevant for impact tsunami, but also the most difficult to access experimentally.  相似文献   
58.
Surface sediment samples were collected from the Squamish River Delta, British Columbia, in order to determine the role of sediment surface area in the preservation of organic matter (OM) in a paralic sedimentary environment. The Squamish Delta is an actively prograding delta, located at the head of Howe Sound.Bulk total organic carbon (TOC) values across the Squamish Delta are low, ranging from 0.1 to 1.0 wt.%. The carbon/total nitrogen ratio (Corg/N) ranges from 6 to 17, which is attributed to changes in OM type and facies variations. The <25-μm fraction has TOC concentrations up to 2.0 wt.%, and a Corg/N ratio that ranges from 14 to 16. The 53–106-μm fraction has higher TOC concentrations and Corg/N ratios relative to the 25–53-μm fraction. The Corg/N ratio ranges from 9 to 18 in the 53–106-μm fraction and 5.5–10.5 in the 25–53-μm fraction. Surface area values for bulk sediments are low (0.5–3.0 m2/g) due to the large proportion of silt size material. Good correlation between surface area and TOC in bulk samples suggests that OM is adsorbed to mineral surfaces. Similar relationships between surface area and TOC were observed in size-fractionated samples. Mineralogy and elemental composition did not correlate with TOC concentration.The relationships between surface area, TOC and total nitrogen (TN) can be linked to the hydrodynamic and sedimentological conditions of the Squamish Delta. As a result, the Squamish Delta is a useful modern analogue for the formation of petroleum source rocks in ancient deltaic environments, where TOC concentrations are often significantly lower than those in source rocks formed in other geological settings.  相似文献   
59.
A technique has been developed for predicting the irregular advance pattern often observed as water spreads on the surface of the ground. The technique is a combination of stochastic sketching, potential theory, probability theory, and a mass balance equation in the form of an advance equation. The technique can be used on flat as well as sloping terrain and addresses any form of obstructions or constraints to the flow of the water. The stochastic sketching portion of the technique uses cellular automata with transition probability movement rules to sketch the dynamics of small volume water elements in the defined environment. Randomly selected small volume flow path segments are computed and plotted. The envelope of these segments defines the wetted area and the advance front. Several examples are presented showing the patterns produced for various situations.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号