首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   45篇
  国内免费   40篇
测绘学   3篇
大气科学   2篇
地球物理   72篇
地质学   97篇
海洋学   153篇
天文学   681篇
综合类   8篇
自然地理   8篇
  2024年   5篇
  2023年   5篇
  2022年   8篇
  2021年   7篇
  2020年   13篇
  2019年   11篇
  2018年   14篇
  2017年   19篇
  2016年   7篇
  2015年   12篇
  2014年   16篇
  2013年   23篇
  2012年   13篇
  2011年   25篇
  2010年   18篇
  2009年   87篇
  2008年   59篇
  2007年   87篇
  2006年   91篇
  2005年   63篇
  2004年   75篇
  2003年   64篇
  2002年   55篇
  2001年   65篇
  2000年   42篇
  1999年   39篇
  1998年   66篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
171.
172.
173.
174.
Two-dimensional (axially symmetric) numerical hydrodynamical calculations of accretion flows that cannot cool through emission of radiation are presented. The calculations begin from an equilibrium configuration consisting of a thick torus with constant specific angular momentum. Accretion is induced by the addition of a small anomalous azimuthal shear stress which is characterized by a function ν . We study the flows generated as the amplitude and form of ν are varied. A spherical polar grid which spans more than two orders of magnitude in radius is used to resolve the flow over a wide range of spatial scales. We find that convection in the inner regions produces significant outward mass motions that carry away both the energy liberated by and a large fraction of the mass participating in the accretion flow. Although the instantaneous structure of the flow is complex and dominated by convective eddies, long-time averages of the dynamical variables show remarkable correspondence to certain steady-state solutions. The two-dimensional structure of the time-averaged flow is marginally stable to the Høiland criterion, indicating that convection is efficient. Near the equatorial plane, the radial profiles of the time-averaged variables are power laws with an index that depends on the radial scaling of the shear stress. A stress in which ν ∝ r 1/2 recovers the widely studied self-similar solution corresponding to an ' α -disc'. We find that, regardless of the adiabatic index of the gas, or the form or magnitude of the shear stress, the mass inflow rate is a strongly increasing function of radius, and is everywhere nearly exactly balanced by mass outflow. The net mass accretion rate through the disc is only a fraction of the rate at which mass is supplied to the inflow at large radii, and is given by the local, viscous accretion rate associated with the flow properties near the central object.  相似文献   
175.
We present the results of a study of propagating warp or bending waves in accretion discs. Three-dimensional hydrodynamic simulations were performed using smoothed particle hydrodynamics (SPH), and the results are compared with calculations based on the linear theory of warped discs.
We examine the response of a gaseous disc to an initially imposed warping disturbance under a variety of physical conditions. We consider primarily the physical regime in which the dimensionless viscosity parameter α < H r , where H r is the disc aspect ratio, so that bending waves are expected to propagate. We also performed calculations for disc models in which α > H r , where the warps are expected to evolve diffusively. Small-amplitude (linear) perturbations are studied in both Keplerian and slightly non-Keplerian discs, and we find that the results of the SPH calculations can be reasonably well fitted by those of the linear theory. The main results of these calculations are: (i) the warp in Keplerian discs when α < H r propagates with little dispersion, and damps at a rate expected from estimates of the code viscosity; (ii) warps evolve diffusively when α > H r ; (iii) the slightly non-Keplerian discs lead to a substantially more dispersive behaviour of the warps, which damp at a similar rate to the Keplerian case, when α < H r .
Initially imposed higher amplitude, non-linear warping disturbances were studied in Keplerian discs. The results indicate that non-linear warps can lead to the formation of shocks, and that the evolution of the warp becomes less wave-like and more diffusive in character.
This work is relevant to the study of the warped accretion discs that may occur around Kerr black holes or in misaligned binary systems, and is mainly concerned with discs in which α < H r . The results indicate that SPH can model the hydrodynamics of warped discs, even when using rather modest numbers of particles.  相似文献   
176.
177.
We describe an efficient method of calculating the radiation pressure resulting from spectral lines, including all the terms in the velocity gradient tensor. We apply this method to calculate the two-dimensional, time-dependent structure of winds from luminous discs. Qualitative features of our new models are very similar to those we calculated including only the dominant terms in the tensor. In particular, we find that models which displayed unsteady behaviour in our earlier paper are also unsteady with the new method, and gross properties of the winds, such as mass-loss rate and characteristic velocity, are not changed by the more accurate approach. The largest change caused by the new method is in the disc-wind opening angle: winds driven only by the disc radiation are more polar with the new method, whilst winds driven by the disc and central object radiation are typically more equatorial. In the closing discussion, we provide further insight into the way the geometry of the radiation field and consequent flow determine the time properties of the flow.  相似文献   
178.
179.
A boundary integral formulation for the dynamics of incompressible, inviscid, self-gravitating bodies is described. The method is applied to several problems of astrophysical interest: spheroidal equilibria (Maclaurin and Jeans), oscillations, and a simple version of tidal encounter and breakup.  相似文献   
180.
We compute the mass outflow rate R from relativistic matter that is accreting quasi-spherically on to the Schwarzschild black holes. Taking the pair-plasma pressure-mediated shock surface as the effective boundary layer (of the black hole) from where the bulk of the outflow is assumed to be generated, computation of this rate is done using combinations of exact transonic inflow and outflow solutions. We find that R depends on the initial parameters of the flow, the polytropic index of matter, the degree of compression of matter near the shock surface and the location of the shock surface itself. We thus not only study the variation of the mass outflow rate as a function of various physical parameters governing the problem, but also provide a sufficiently plausible estimation of this rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号