首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   934篇
  免费   45篇
  国内免费   39篇
测绘学   1篇
大气科学   2篇
地球物理   72篇
地质学   96篇
海洋学   150篇
天文学   681篇
综合类   8篇
自然地理   8篇
  2024年   5篇
  2023年   5篇
  2022年   7篇
  2021年   6篇
  2020年   12篇
  2019年   11篇
  2018年   14篇
  2017年   19篇
  2016年   6篇
  2015年   11篇
  2014年   16篇
  2013年   23篇
  2012年   13篇
  2011年   25篇
  2010年   18篇
  2009年   86篇
  2008年   59篇
  2007年   87篇
  2006年   91篇
  2005年   63篇
  2004年   75篇
  2003年   64篇
  2002年   55篇
  2001年   65篇
  2000年   42篇
  1999年   39篇
  1998年   66篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
排序方式: 共有1018条查询结果,搜索用时 109 毫秒
11.
The remnant resulting from the merger of two neutron stars produces neutrinos in copious amounts. In this paper we present the neutrino emission results obtained via Newtonian, high-resolution simulations of the coalescence event. These simulations use three-dimensional smoothed particle hydrodynamics together with a nuclear, temperature-dependent equation of state and a multiflavour neutrino leakage scheme. We present the details of our scheme, discuss the neutrino emission results from a neutron star coalescence and compare them with the core-collapse supernova case where neutrino emission has been studied for several decades. The average neutrino energies are similar to those in the supernova case, but contrary to the latter, the luminosities are dominated by electron-type antineutrinos that are produced in the hot, neutron-rich, thick disc of the merger remnant. The cooler parts of this disc contain substantial fractions of heavy nuclei, which, however, do not influence the overall neutrino emission results significantly. Our total neutrino luminosities from the merger event are considerably lower than those found in previous investigations. This imposes constraints on the ability of neutron star mergers to produce a gamma-ray burst via neutrino annihilation. The neutrinos are emitted preferentially along the initial binary rotation axis, an event seen 'pole-on' would appear much brighter in neutrinos than a similar event seen 'edge-on'.  相似文献   
12.
We compare analytical expressions of precession rates from apsidal (positive) superhumps in close binary systems with numerical disc simulation results and observed values. In the analytical expressions, we include both the dynamical effects on the precession of the disc and effects caused by pressure forces that have been theorized to provide a retrograde effect (i.e. slowing) on the prograde disc precession. We establish new limits on density wave pitch angle to a normalized disc sound speed 60≥Ωorb  d  tan  i / c >2.214 . Using average values for the density wave pitch angle i and speed of sound c , we find good correlation between numerical simulations and the analytical expression for the apsidal superhump period excess, which includes both the prograde and retrograde effects, for mass ratios of 0.025≤ q ≤0.33 . We also show good correlations with the four known eclipsing systems, OY Car, Z Cha, HT Cas, and WZ Sge. Our analytical expression for apsidal superhump period excess as a function of orbital period is consistent with the trend found in observed systems.  相似文献   
13.
This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz and Klu’zniak (2001). In a first paper (P'etri, 2005a, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. After a discussion on the magnitude of this deformation applied to neutron stars, we show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to {three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric resonance}. In a second part, we focus on the linear response of a thin accretion disk in the 2D limit. {Waves are launched at the aforementioned resonance positions and propagate in some permitted regions inside the disk, according to the dispersion relation obtained by a WKB analysis}. In a last part, these results are confirmed and extended via non linear hydrodynamical numerical simulations performed with a pseudo-spectral code solving Euler's equations in a 2D cylindrical coordinate frame. {We found that for a weak potential perturbation, the Lindblad resonance is the only effective mechanism producing a significant density fluctuation}. In a last step, we replaced the Newtonian potential by the so called logarithmically modified pseudo-Newtonian potential in order to take into account some general-relativistic effects like the innermost stable circular orbit (ISCO). The latter potential is better suited to describe the close vicinity of a neutron star or a black hole. However, from a qualitative point of view, the resonance conditions remain the same. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.  相似文献   
14.
We present numerical investigations into the formation of massive stars from turbulent cores of density structure  ρ∝ r −1.5  . The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra   P ∝ k −4  and   P ∝ k −3.5  , and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density  (10−14 g cm−3)  . Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.  相似文献   
15.
This paper presents two and three dimensional simulations of the interaction of shocks with media with large numbers of dense inclusions. An approximate model of the interaction of a starburst wind with the surrounding galactic ISM illustrates issues which must be addressed in global models of ISM dynamics. As a step towards developing the sub-grid model of multiphase turbulence, we define and study a form of ‘multiphase Riemann problem’. This allows us to develop macroscopic characteristics of the flows which may be compared to such subgrid models.  相似文献   
16.
17.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号