首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   442篇
  国内免费   410篇
测绘学   16篇
大气科学   18篇
地球物理   519篇
地质学   1223篇
海洋学   131篇
天文学   4篇
综合类   39篇
自然地理   94篇
  2024年   10篇
  2023年   28篇
  2022年   36篇
  2021年   53篇
  2020年   97篇
  2019年   81篇
  2018年   93篇
  2017年   90篇
  2016年   93篇
  2015年   88篇
  2014年   114篇
  2013年   129篇
  2012年   99篇
  2011年   84篇
  2010年   83篇
  2009年   67篇
  2008年   72篇
  2007年   72篇
  2006年   99篇
  2005年   81篇
  2004年   65篇
  2003年   48篇
  2002年   48篇
  2001年   40篇
  2000年   44篇
  1999年   45篇
  1998年   35篇
  1997年   30篇
  1996年   23篇
  1995年   14篇
  1994年   19篇
  1993年   15篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
排序方式: 共有2044条查询结果,搜索用时 10 毫秒
91.
随着城市化进程的不断加快,供水管网和城市地形都在发生频繁的变化,管网简化模型必须随时更新,保持与现实管网的对应,才能使得水力计算的结果保持准确。将水力计算嵌入给水管网信息系统,可以使水力计算中的大部分输入数据直接从GIS数据库中提取,并借助GIS的数据更新手段保持管网计算模型的现势性,还可以利用GIS的表现能力显示输出...  相似文献   
92.
Root zone soil water content impacts plant water availability, land energy and water balances. Because of unknown hydrological model error, observation errors and the statistical characteristics of the errors, the widely used Kalman filter (KF) and its extensions are challenged to retrieve the root zone soil water content using the surface soil water content. If the soil hydraulic parameters are poorly estimated, the KF and its extensions fail to accurately estimate the root zone soil water. The H‐infinity filter (HF) represents a robust version of the KF. The HF is widely used in data assimilation and is superior to the KF, especially when the performance of the model is not well understood. The objective of this study is to study the impact of uncertain soil hydraulic parameters, initial soil moisture content and observation period on the ability of HF assimilation to predict in situ soil water content. In this article, we study seven cases. The results show that the soil hydraulic parameters hold a critical role in the course of assimilation. When the soil hydraulic parameters are poorly estimated, an accurate estimation of root soil water content cannot be retrieved by the HF assimilation approach. When the estimated soil hydraulic parameters are similar to actual values, the soil water content at various depths can be accurately retrieved by the HF assimilation. The HF assimilation is not very sensitive to the initial soil water content, and the impact of the initial soil water content on the assimilation scheme can be eliminated after about 5–7 days. The observation interval is important for soil water profile distribution retrieval with the HF, and the shorter the observation interval, the shorter the time required to achieve actual soil water content. However, the retrieval results are not very accurate at a depth of 100 cm. Also it is complex to determine the weighting coefficient and the error attenuation parameter in the HF assimilation. In this article, the trial‐and‐error method was used to determine the weighting coefficient and the error attenuation parameter. After the first establishment of limited range of the parameters, ‘the best parameter set’ was selected from the range of values. For the soil conditions investigated, the HF assimilation results are better than the open‐loop results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
93.
94.
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
95.
As a large and dynamic land‐use category, tropical secondary forests may affect climate, soils, and hydrology in a manner different from primary forests or agricultural areas. We investigated the saturated hydraulic conductivity Ksat of a Kandiudult under different land uses in Rondonia, Brazil. We measured Ksat at four depths (12·5, 20, 30 and 50 cm) under (a) primary forest, (b) a former banana–cacao plantation (SF1), and (c) an abandoned pasture (SF2). At 12·5 cm, all three land uses differ significantly (α = 0·1), but not at the 20 and 30 cm depths. At 50 cm, Ksat was significantly greater in the former pasture than in other land uses. Lateral subsurface flow is expected during intense rainfall (about 30 times per year) at 30 cm depth in SF1 and at 50 cm depth in the forest, whereas the relatively low permeability at shallow 12·5 cm in the SF2 may result not only in lateral subsurface flow, but also saturation overland flow. For modelling purposes, recovering systems seem to have Ksat values distinct from primary forest at shallow depths, whereas at deeper layers (>20 cm) they may be considered similar to forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
96.
The response of deformable fractures to changes in fluid pressure controls phenomena ranging from the flow of fluids near wells to the propagation of hydraulic fractures. We developed an analysis designed to simulate fluid flows in the vicinity of asperity‐supported fractures at rest, or fully open fractures that might be propagating. Transitions between at‐rest and propagating fractures can also be simulated. This is accomplished by defining contact aperture as the aperture when asperities on a closing fracture first make contact. Locations on a fracture where the aperture is less than the contact aperture are loaded by both fluid pressure and effective stress, whereas locations where the aperture exceeds the contact aperture are loaded only by fluid pressure. Fluid pressure and effective stress on the fracture are determined as functions of time by solving equations of continuity in the fracture and matrix, and by matching the global displacements of the fracture walls to the local deformation of asperities. The resulting analysis is implemented in a numerical code that can simulate well tests or hydraulic fracturing operations. Aperture changes during hydraulic well tests can be measured in the field, and the results predicted using this analysis are similar to field observations. The hydraulic fracturing process can be simulated from the inflation of a pre‐existing crack, to the propagation of a fracture, and the closure of the fracture to rest on asperities or proppant. Two‐dimensional, multi‐phase fluid flow in the matrix is included to provide details that are obscured by simplifications of the leakoff process (Carter‐type assumptions) used in many hydraulic fracture models. Execution times are relatively short, so it is practical to implement this code with parameter estimation algorithms to facilitate interpretation of field data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
97.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
98.
This paper analyses the problem of a hydraulically driven fracture, propagating in an impermeable, linear elastic medium. The fracture is driven by injection of an incompressible, viscous fluid with power‐law rheology and behaviour index n?0. The opening of the fracture and the internal fluid pressure are related through the elastic singular integral equation, and the flow of fluid inside the crack is modelled using the lubrication theory. Under the additional assumptions of negligible toughness and no lag between the fluid front and the crack tip, the problem is reduced to self‐similar form. A solution that describes the crack length evolution, the fracture opening, the net fluid pressure and the fluid flow rate inside the crack is presented. This self‐similar solution is obtained by expanding the fracture opening in a series of Gegenbauer polynomials, with the series coefficients calculated using a numerical minimization procedure. The influence of the fluid index n in the crack propagation is also analysed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
99.
Through laboratory experiments conducted in a grass‐lined flume, the hydraulic resistance of grass is measured and quantified. For the grass examined, it is found that Manning's n value is greater than those recommended in well‐established texts such as Chow (1959. Open Channel Flow. McGraw‐Hill: Singapore), relatively lower than those predicted by nUR methods, but corresponds well with the value found from calibration studies of two‐ and three‐dimensional numerical models. The assumption of a uniform Manning's n value with flow depth, which is often made in numerical modelling, may be invalid depending on the relative submergence of the vegetation. Drag coefficients are evaluated for a method applicable to three‐dimensional numerical models. Further detailed experimental investigation and application of these approaches within a numerical modelling framework is now recommended. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
100.
ZDY1000G型全液压坑道钻机的设计   总被引:1,自引:0,他引:1  
ZDY1000G型全液压坑道钻机是一款主要面向坑道勘探而设计的装备,可用于煤矿瓦斯抽放孔、探放水孔和其他工程钻孔的施工。介绍了该钻机的设计思路、机械系统和液压系统,并对具有复合缓冲张紧装置的双油缸链条倍速给进机构和具有减压钻进功能的双泵液压系统进行了详细描述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号