首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   601篇
  国内免费   450篇
测绘学   13篇
大气科学   43篇
地球物理   772篇
地质学   1482篇
海洋学   140篇
天文学   10篇
综合类   53篇
自然地理   260篇
  2024年   12篇
  2023年   22篇
  2022年   45篇
  2021年   67篇
  2020年   93篇
  2019年   95篇
  2018年   104篇
  2017年   89篇
  2016年   105篇
  2015年   95篇
  2014年   133篇
  2013年   163篇
  2012年   109篇
  2011年   104篇
  2010年   92篇
  2009年   104篇
  2008年   112篇
  2007年   109篇
  2006年   138篇
  2005年   127篇
  2004年   90篇
  2003年   74篇
  2002年   90篇
  2001年   67篇
  2000年   66篇
  1999年   75篇
  1998年   59篇
  1997年   43篇
  1996年   43篇
  1995年   33篇
  1994年   44篇
  1993年   30篇
  1992年   27篇
  1991年   20篇
  1990年   27篇
  1989年   9篇
  1988年   10篇
  1987年   21篇
  1986年   8篇
  1985年   5篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   4篇
  1976年   1篇
  1954年   2篇
排序方式: 共有2773条查询结果,搜索用时 15 毫秒
81.
82.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
83.
A dataset of 21 study reaches in the Porter and Kowai rivers (eastern side of the South Island), and 13 study reaches in Camp Creek and adjacent catchments (western side of the South Island) was used to examine downstream hydraulic geometry of mountain streams in New Zealand. Streams in the eastern and western regions both exhibit well-developed downstream hydraulic geometry, as indicated by strong correlations between channel top width, bankfull depth, mean velocity, and bankfull discharge. Exponents for the hydraulic geometry relations are similar to average values for rivers worldwide. Factors such as colluvial sediment input to the channels, colluvial processes along the channels, tectonic uplift, and discontinuous bedrock exposure along the channels might be expected to complicate adjustment of channel geometry to downstream increases in discharge. The presence of well-developed downstream hydraulic geometry relations despite these complicating factors is interpreted to indicate that the ratio of hydraulic driving forces to substrate resisting forces is sufficiently large to permit channel adjustment to relatively frequent discharges.  相似文献   
84.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   
85.
86.
王世玉  薛军 《探矿工程》2005,32(6):41-43
因液压步履移位最方便,辅助时间短,换向灵活,移位对孔准确,大型岩土钻掘设备施工的群孔现场实现近距离的自行迁移多采用液压步履机构。详细叙述了双向移动和单向移动加转向步履机构的结构和特点。  相似文献   
87.
This paper presents streambed hydraulic conductivities of the Platte River from south-central to eastern Nebraska. The hydraulic conductivities were determined from river channels using permeameter tests. The vertical hydraulic conductivities (K v ) from seven test sites along this river in south-central Nebraska belong to one statistical population. Its mean value is 40.2 m/d. However, the vertical hydraulic conductivities along four transects of the Ashland test site in eastern Nebraska have lower mean values, are statistically different from the K v values in south-central Nebraska, and belong to two different populations with mean values of 20.7 and 9.1 m/d, respectively. Finer sediments carried from the Loup River and Elkhorn River watersheds to the eastern reach of the Platte River lowers the vertical hydraulic conductivity of the streambed. Correlation coefficients between water depth and K v values along a test transect indicates a positive correlation – a larger K v usually occurs in the part of channel with deeper water. Experimental variograms derived from the vertical hydraulic conductivities for several transects across the channels of the Platte River show periodicity of spatial correlation, which likely result from periodic variation of water depth across the channels. The sandy to gravelly streambed contains very local silt and clay layers; spatially continuous low-permeability streambed was not observed in the river channels. The horizontal hydraulic conductivities were larger than the vertical hydraulic conductivities for the same test locations.  相似文献   
88.
89.
Lirong Lin  Jiazhou Chen 《水文研究》2015,29(9):2079-2088
Rain‐induced erosion and short‐term drought are the two factors that limit the productivity of croplands in the red soil region of subtropical China. The objective of this study was to estimate the effects of conservation practices on hydraulic properties and root‐zone water dynamics of the soil. A 3‐year experiment was performed on a slope at Xianning. Four treatments were evaluated for their ability to reduce soil erosion and improve soil water conditions. Compared with no practices (CK) and living grass strips (GS), the application of polyacrylamide (PAM) significantly reduced soil crust formation during intense rainfall, whereas rice straw mulching (SM) completely abolished soil crust formation. The SM and PAM treatments improved soil water‐stable aggregates, with a redistribution of micro‐aggregates into macro‐aggregates. PAM and SM significantly increased the soil water‐holding capacity. These practices mitigated the degradation of the soil saturated hydraulic conductivity (Ks) during intense rainfalls. These methods increased soil water storage but with limited effects during heavy rainfalls in the wet period. In contrast, during the dry period, SM had the highest soil water storage, followed by PAM and CK. Grass strips had the lowest soil water storage because of the water uptake during the vigorous grass growth. A slight decline in the soil moisture resulted in a significant decrease in the unsaturated hydraulic conductivity (Ku) of the topsoil. Therefore, the hydraulic conductivity in the field is governed by soil moisture, and the remaining soil moisture is more important than improving soil properties to resist short‐term droughts. As a result, SM is the most effective management practice when compared with PAM and GS, although they all protect the soil hydraulic properties during wet periods. These results suggest that mulching is the best strategy for water management in erosion‐threatened and drought‐threatened red soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
90.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号