首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1701篇
  免费   346篇
  国内免费   256篇
测绘学   22篇
大气科学   16篇
地球物理   625篇
地质学   1166篇
海洋学   213篇
天文学   2篇
综合类   66篇
自然地理   193篇
  2024年   8篇
  2023年   15篇
  2022年   22篇
  2021年   60篇
  2020年   65篇
  2019年   76篇
  2018年   69篇
  2017年   57篇
  2016年   72篇
  2015年   81篇
  2014年   83篇
  2013年   122篇
  2012年   92篇
  2011年   103篇
  2010年   78篇
  2009年   111篇
  2008年   100篇
  2007年   79篇
  2006年   104篇
  2005年   99篇
  2004年   95篇
  2003年   76篇
  2002年   77篇
  2001年   79篇
  2000年   73篇
  1999年   63篇
  1998年   49篇
  1997年   47篇
  1996年   34篇
  1995年   37篇
  1994年   40篇
  1993年   30篇
  1992年   26篇
  1991年   21篇
  1990年   22篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有2303条查询结果,搜索用时 268 毫秒
371.
延吉—珲春地区的圆砾层是该区域工程建设经常利用的土层.为了获取圆砾层可靠的地基承载力数据,探讨确定地基承载力适宜的测试手段和方法,以及检验以前地基承载力数据的可靠度,采用载荷试验和重型圆锥动力触探试验原位测试方法对圆砾层的地基承载力进行了测试研究,获取了十二组地基承载力特征值、变形模量和重型圆锥动力触探锤击数试验数据.通过对试验数据的统计分析,得到了圆砾层地基承载力特征值的范围,得出地基承载力特征值、变形模量与重型圆锥动力触探锤击数线性相关的结论.据此,提出了适合当地工程地质条件的根据重型圆锥动力触探锤击数计算圆砾层地基承载力特征值和变形模量的经验公式.为延吉—珲春地区岩土工程勘察工作能够准确可靠、便捷、经济地确定圆砾层地基承载力特征值和变形模量提供了依据和方法,并为吉林省其他地区圆砾层地基承载力的研究提供了参考.  相似文献   
372.
杭东普查区煤层产状平缓,构造简单,但由于含煤地层为陆相沉积,煤层层数多、厚度、间距变化大,沉积岩相变化快、大范围内缺乏稳定的对比标志层,因此煤岩层对比是本区勘查需要重点解决的难题。通过对比杭东普查区与邻区200余孔的测井资料,分析煤岩层在各种测井曲线的异常特征与异常组合规律,确定了对煤岩层对比有重大意义的标志层,如延长组与上覆延安组的典型视电阻率异常分界;延安组在高视电阻率曲线上的“树杆”状凸起特征;安定组视电阻率曲线近直线的低值形态;4-1煤在视电阻率曲线上呈现出的“斜坡”状或“刀”状高异常,以及在自然伽玛曲线上的“凹坑”特征;侏罗系中统直罗组的高伽马异常,等等。这些典型特征保证了该区煤岩层对比可靠性,为提交优质地质勘查报告发挥了重要作用。  相似文献   
373.
宋家营勘查区位于河北唐山丰南区,存在着新生界厚度大,流沙层、卵石层、砂砾层松散破碎,部分钻孔漏失严重;煤层埋藏深、层数多、层位变化大等问题,给提高钻探施工质量和效益带来了不便。为解决这些问题,作者从钻孔设计人手,针对不同的地层采用相适应钻探工艺和技术措施,对长期沿用钻探方法进行改进,使钻进方法更具有针对性;对不同的地层配制了不同的冲洗液,对地层漏失根据情况采用恰当的堵漏方法,大大减少了因堵漏增加的成本。从而使钻进效率由过去的287m/台月,提高到440m/台月,台月效率提高了53.3%,大大降低了钻探成本。  相似文献   
374.
魏碧波 《探矿工程》2013,40(1):31-34
通过2口基岩深井施工实例,分析、探讨了钻井成井工艺对出水量的影响以及应采取的针对性技术措施,可为同类水井的钻进成井施工提供一些有益的借鉴。  相似文献   
375.
大巩山西蝈堆组蚌埠期褶皱可利用含白云质大理岩透镜体的蛇纹岩作为标志层来恢复,推测其为轴面倒向北的紧密同斜褶皱,S0近南北向,枢纽西倾,地层由东向西变新。  相似文献   
376.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   
377.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
378.
The highly stochastic nature of riverbank erosion has driven the need for spatially explicit empirical models. Detailed bank profile surveys along a meander bend of the Brandywine Creek in Pennsylvania, USA, before and after 28 high flow events over a 2·5 year period are used to develop an empirical model of cohesive bank profile erosion. Two hundred and thirty‐six bank erosion observations are classified as hydraulic erosion or subaerial erosion. Threshold conditions required to initiate bank erosion cannot be defined based on field measurements. Using the near‐bank velocity and the number of freeze–thaw cycles as predictors, regression equations are derived for hydraulic erosion that specify the length, thickness, and location on the bank face of eroded blocks. An empirical discriminant function defines the critical geometry of overhang failures, and the volumes removed by overhang failures are computed using another regression equation. All the regression equations are significant, but have low correlation coefficients, suggesting that cohesive bank erosion has a strong stochastic component. Individual events typically remove small masses of soil (average volume 0·084 m3/m) a few centimeters thick (median = 0·057 m) and a few decimeters in length (median = 0·50 m) from the lower third of the bank. Hydraulic erosion is responsible for 87% of all erosion. When applied to three survey sites not used in its development, the profile model predicts the total volume of erosion with errors of 23%, 5% and 1%. Twenty‐four percent of computed erosion volumes for single events are within 50% of observed volumes at these three sites. Extending the approach to decadal timescales and to entire bends will require three‐dimensional observations of bank failure, and spatially and temporally explicit methods to account for the influence of individual large trees on bank failures and near‐bank hydraulic processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
379.
The river Rhine has lain under considerable anthropogenic stress of its water quality for 100 years. As early as 1905 the first results of studies of the plankton in the Rhine were published. Due to the long residence time of the water a real potamoplankton can develop and at the end of the Lower Rhine it reaches its highest density. The paper consists of two parts. At first an overview is given about the history of plankton studies in the Rhine. The second part is the presentation of results from a monitoring at the Lower Rhine from 1979 to 2004.First systematic studies started at the beginning of the 20th century at the beginning of pollution. Our studies started during a phase of recreation from extreme pollution and eutrophication. Samples were taken at four stations: Bad Honnef, km 640, entrance to North Rhine-Westphalia, Düsseldorf, km 732, Duisburg, km 792 downstream large industrial effluents and big cities, Kleve-Bimmen, km 865 at the border to the Netherlands.In the 1970s nutrients were high, especially phosphate 0.65 mg PO4-P L−1 in 1979. After 1980 phosphate dropped to 0.11 mg PO4-P L−1 in 2004 (mean values of the growing season). Ammonia was reduced from about 0.52 (1979) to 0.02 (2004) mg NH4-N L−1. Nitrate remained between 3.72 (1989) and 2.26 (2004) mg NO3-N L−1 at a relatively high level. Oxygen concentrations were very low during the 1960s and 1970s, sometimes only 4 mg L−1 O2. During our studies the oxygen increased up to 9 mg L−1 O2 with a tendency to 11 mg L−1 O2 in the last years. Chlorophyll a was estimated to be between 59 (1979) and 31μg L−1 (1986) with short peaks up to 170 μg L−1 (1989). Since 1992 the mean values have varied between 30 (1993) and 21 μg L−1 (2004).The floristic phytoplankton composition is characterised by the dominance of the centric diatom Stephanodiscus hantzschii. Other diatoms like Skeletonema subsalsum, Skeletonema potamos and Asterionella formosa were regularly present in smaller quantities. The second dominant group was coccale green algae. During the 1980s they formed up to 35% of the biomass. Since the 1990s their contribution to the phytoplankton became much smaller. This change corresponds with the increase of wastewater treatment and the diminution of nutrients. All the other groups of algae were present in minor quantities. During the time of higher trophy in the 1970s and 1980s the phytoplankton formed two peaks, in recent years only one peak has developed, depending on different flow conditions during the growing season and lower trophic state in the upstream parts of the river.Excellent correspondence exists between cell number, biovolume and chlorophyll a content and the results of delayed fluorescence (DF) measurement. The trophic status in the Lower Rhine may be estimated as (moderate) eutrophic. The ecological status of the phytoplankton is good based on the requirements of the European Water Framework Directive (WFD).The zooplankton consists mainly of rotatoria and larvs of Dreissena polymorpha. Grazing on phytoplankton seems to be mainly due to the large quantities of benthic Dreissena and the newly introduced mussel Corbicula.  相似文献   
380.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号