首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3501篇
  免费   497篇
  国内免费   369篇
测绘学   84篇
大气科学   198篇
地球物理   1243篇
地质学   1220篇
海洋学   201篇
天文学   700篇
综合类   70篇
自然地理   651篇
  2024年   15篇
  2023年   26篇
  2022年   64篇
  2021年   163篇
  2020年   142篇
  2019年   148篇
  2018年   115篇
  2017年   152篇
  2016年   132篇
  2015年   152篇
  2014年   138篇
  2013年   235篇
  2012年   144篇
  2011年   227篇
  2010年   202篇
  2009年   216篇
  2008年   279篇
  2007年   232篇
  2006年   182篇
  2005年   187篇
  2004年   166篇
  2003年   129篇
  2002年   104篇
  2001年   95篇
  2000年   122篇
  1999年   106篇
  1998年   91篇
  1997年   61篇
  1996年   62篇
  1995年   46篇
  1994年   32篇
  1993年   28篇
  1992年   24篇
  1991年   20篇
  1990年   18篇
  1989年   23篇
  1988年   24篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1973年   1篇
排序方式: 共有4367条查询结果,搜索用时 31 毫秒
121.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
122.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   
123.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
124.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
125.
Reflecting internal catchment hydrological processes in hydrological models is important for accurate predictions of the impact of climate and land-use change on water resources. Characterizing these processes is however difficult and expensive due to their dynamic nature and spatio-temporal variability. Hydropedology is a relatively new discipline focusing on the synergistic integration of hydrology, soil physics and pedology. Hydropedological interpretations of soils and soil distribution can be used to characterize key hydrological processes, especially in areas with no or limited hydrometric measurements. Here we applied a hydropedological approach to reflect flowpaths through detailed routing in SWAT+ for a 157 ha catchment (Weatherley) in South Africa. We compared the hydropedological approach and a standard (no routing) approach against measured streamflow (two weirs) and soil water contents (13 locations). The catchment was treated as ‘ungauged’ and the model was not calibrated against hydrometric measurements in order to determine the direct contribution of hydropedology on modelling efficiency. Streamflow was predicted well without calibration (NSE > 0.8; R2 > 0.82) for both approaches at both weirs. The standard approach yielded slightly better streamflow predictions. The hydropedological approach resulted in considerable improvements in the simulation of soil water contents (R2 increased from 0.40 to 0.49 and PBIAS decreased from 40% to 20%). The routing capacity of SWAT+ as employed in the hydropedological approach reduced the underestimation of wetland water regimes drastically and resulted in a more accurate representation of the dominant hydrological processes in this catchment. We concluded that hydropedology can be a valuable source of ‘soft data’ to reflect internal catchment structure and processes and, potentially, for realistic calibrations in other studies, especially those conducted in areas with limited hydrometric measurements.  相似文献   
126.
127.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   
128.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
129.
The objective of this study was to quantify the impacts of land use/land cover (LULC) change on the hydrology of the Jedeb, an agricultural dominated mesoscale catchment, in the Abay/Upper Blue Nile basin, Ethiopia. Two methods have been used. First, the trends of certain daily flow variability parameters were evaluated to detect statistical significance of the change of the hydrologic response. Second, a conceptual monthly hydrological model was used to detect changes in the model parameters over different periods to infer LULC change. The results from the statistical analysis of the daily flows between 1973 and 2010 reveal a significant change in the response of the catchment. Peak flow is enhanced, i.e. response appears to be flashier. There is a significant increase in the rise and fall rates of the flow hydrograph, as well as the number of low‐flow pulses below a threshold level. The discharge pulses show a declining duration with time. The model result depicts a change in model parameters over different periods, which could be attributed to an LULC change. The model parameters representing soil moisture conditions indicated a gradual decreasing trend, implying limited storage capacity likely attributed to increasing agricultural farming practices in the catchment. This resulted in more surface runoff and less infiltration into the soil layers. The results of the monthly flow duration curve analysis indicated large changes of the flow regime. The high flow has increased by 45% between the 1990s and 2000s, whereas the reduction in low flows was larger: a 15% decrease between 1970s and 1980s, 39% between 1980s and 1990s and up to 71% between 1990s and 2000s. These results, could guide informed catchment management practices to reduce surface runoff and augment soil moisture level in the Jedeb catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
130.
To understand the effect of woody plant encroachment on hydrological processes of mesic grasslands, we quantified infiltration capacity in situ, the temporal changes in soil water storage, and streamflow of a grassland catchment and a catchment heavily encroached by juniper (Juniperus virginiana, eastern redcedar) in previously cultivated, non‐karst substrate grasslands in north‐central Oklahoma for 3 years. The initial and steady‐state infiltration rates under the juniper canopy were nearly triple to that of the grassland catchment and were intermediate in the intercanopy spaces within the encroached catchment. Soil water content and soil water storage on the encroached catchment were generally lower than on the grassland catchment, especially when preceding the seasons of peak rainfall in spring and fall. Frequency and magnitude of streamflow events were reduced in the encroached catchment. Annual runoff coefficients for the encroached catchment averaged 2.1%, in contrast to 10.6% for the grassland catchment. Annual streamflow duration ranged from 80 to 250 h for the encroached catchment compared with 600 to 800 h for the grassland catchment. Our results showed that the encroachment of juniper into previously cultivated mesic grasslands fundamentally alters catchment hydrological function. Rapid transformation of mesic grassland to a woodland state with juniper encroachment, if not confined, has the potential to drastically reduce soil water, streamflow and flow duration of ephemeral streams in the Southern Great Plains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号