首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29680篇
  免费   6243篇
  国内免费   6742篇
测绘学   4735篇
大气科学   4948篇
地球物理   9040篇
地质学   12795篇
海洋学   3860篇
天文学   751篇
综合类   2104篇
自然地理   4432篇
  2024年   109篇
  2023年   314篇
  2022年   883篇
  2021年   1095篇
  2020年   1294篇
  2019年   1650篇
  2018年   1583篇
  2017年   1782篇
  2016年   1888篇
  2015年   1966篇
  2014年   2059篇
  2013年   2613篇
  2012年   2180篇
  2011年   2173篇
  2010年   1722篇
  2009年   1794篇
  2008年   1906篇
  2007年   1901篇
  2006年   1819篇
  2005年   1613篇
  2004年   1455篇
  2003年   1245篇
  2002年   1124篇
  2001年   969篇
  2000年   943篇
  1999年   745篇
  1998年   661篇
  1997年   575篇
  1996年   495篇
  1995年   454篇
  1994年   409篇
  1993年   340篇
  1992年   208篇
  1991年   191篇
  1990年   121篇
  1989年   90篇
  1988年   93篇
  1987年   59篇
  1986年   29篇
  1985年   31篇
  1984年   18篇
  1983年   2篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   4篇
  1976年   3篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
561.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
562.
This article presents a physical model for frictional pendulum isolators (FPS) that is ready to be implemented in most commercial software. The model is capable of accounting for effects such as large deformations, sticking, and uplift and impact by sensing the normal loads in the isolators through a gap element. Sticking has been incorporated into the model by extending the Park–Wen hysteretic model to the case of large deformations. The proposed model has been tested against a theoretically ‘exact’ formulation leading to essentially identical results. To facilitate its use, the physical FPS model has been cast into a typical non‐linear structural element format, i.e. with deformation as input and restoring force as output. Examples of a building and a bridge have been chosen to show the potential of the element and to provide further insight into the earthquake response of structures with FPS isolators; in particular, in aspects such as the orientation in placement of the isolator, sticking, P? Δ, and other large deformation effects. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
563.
This paper proposes a simple lattice model for collapse analysis of RC bridges subjected to earthquakes by using the extended distinct element method (EDEM). In the model, a concrete element consists of lumped masses connected to one another by springs, and a reinforcement bar is represented by a discrete model or an integrated model. The proposed lattice model is simple but its parameters are reasonably defined. It has fewer element nodes and connecting springs, which will be of benefit by shortening the CPU time. The processes to determine the initial stiffness of concrete and steel springs, the parameters of the constitutive model and the fracture criteria for springs are described. A re‐contact spring model is also proposed to simulate the re‐contact of the concrete after fracture of springs; and a general grid searching method is used to decrease the CPU time for judging re‐contact after fracture. The lattice model is assessed by numerical simulations and experiments. As an application, a damaged single‐column pier subjected to the Kobe Earthquake in 1995 is analysed by EDEM with the proposed model. The simulation results indicate that the proposed model predicts well qualitatively the collapse process of RC bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
564.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
565.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
566.
This paper discusses how to use the three‐dimensional (3D) time‐domain finite‐element method incorporating the least‐squares method to calculate the equivalent foundation mass, damping and stiffness matrices. Numerical simulations indicate that the accuracy of these equivalent matrices is acceptable when the applied harmonic force of 1+sine is used. Moreover, the accuracy of the least‐squares method using the 1+sine force is not sensitive to the first time step for inclusion of data. Since the finite‐element method can model problems flexibly, the equivalent mass, damping and stiffness matrices of very complicated soil profiles and foundations can be established without difficulty using this least‐squares method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
567.
Cyclic tests on two large‐scale models of existing bridge piers with rectangular hollow cross‐section were performed in the ELSA laboratory. The prototype structure is an existing reinforced concrete highway bridge constructed in Austria in 1975. The piers presented several seismic deficiencies and consequently they showed poor hysteretic behaviour and limited deformation capacity as well as undesirable failure modes that do not comply with the requirements of modern codes for seismic‐resistant structures. Experimental data are compared to numerical and empirical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
568.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
569.
对北大别黄土岭麻粒岩中石榴子石进行了详细的电子探针工作,并根据一颗石榴子石的成分环带,建立了扩散模型并进行了数值模拟,结合最优化的方法,得到了极其缓慢的冷却速率0.1℃/a。从扩散动力学数值模拟的角度对大别山造山带的冷却速率进行了探索性研究。该结果表明,黄土岭麻粒岩在受麻粒岩相改造后经历的是一个极其缓慢、持续时间很长的冷却过程。  相似文献   
570.
Tidal mixing plays an important role in the modification of dense water masses around the Antarctic continent. In addition to the vertical (diapycnal) mixing in the near-bottom layers, lateral mixing can also be of relevance in some areas. A numerical tide simulation shows that lateral tidal mixing is not uniformly distributed along the shelf break. In particular, strong mixing occurs all along the Ross Sea and Southern Weddell Sea shelf breaks, while other regions (e.g., the western Weddell Sea) are relatively quiet. The latter regions correspond surprisingly well to areas where indications for cross-shelf exchange of dense water masses have been found. The results suggest that lateral tidal mixing may account for the relatively small contribution of Ross Sea dense water masses to Antarctic Bottom Water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号