首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267篇
  免费   203篇
  国内免费   395篇
测绘学   13篇
大气科学   179篇
地球物理   448篇
地质学   744篇
海洋学   240篇
天文学   3篇
综合类   53篇
自然地理   185篇
  2024年   5篇
  2023年   22篇
  2022年   53篇
  2021年   51篇
  2020年   61篇
  2019年   81篇
  2018年   72篇
  2017年   68篇
  2016年   61篇
  2015年   64篇
  2014年   95篇
  2013年   87篇
  2012年   89篇
  2011年   103篇
  2010年   71篇
  2009年   90篇
  2008年   73篇
  2007年   95篇
  2006年   91篇
  2005年   60篇
  2004年   67篇
  2003年   52篇
  2002年   29篇
  2001年   36篇
  2000年   47篇
  1999年   38篇
  1998年   39篇
  1997年   31篇
  1996年   23篇
  1995年   21篇
  1994年   12篇
  1993年   10篇
  1992年   10篇
  1991年   14篇
  1990年   13篇
  1989年   8篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1865条查询结果,搜索用时 880 毫秒
431.
为更准确的确定自行车无氧实验的适宜负荷,对43名(15岁~21岁)受试者进行了Wingate法无氧功复实验,并对三种间接推算无氧功率适宜负荷的方法进行了比较。结果显示:用直接筛选法确定的适宜负荷与体重、腿围、腿力均高度相关。但与腿力的相关程度最高,与腿围的相关程度次之,与体重的相关程度最低。作者认为,体重、大腿围只能间接的反映腿部力量。用形态系数法和Wingate法确定无氧功率实验适宜负荷时,其准确性易受肌肉质量、训练水平等个体差异的影响。腿力百分比法确定的适宜负有适合于各个项目不同层次的受试者。腿力百分比法会成为一种新的更为准确的无氧功率实验适宜负荷间接确定法。  相似文献   
432.
ABSTRACT

Changes in growing season length (GSL) are of concern for agricultural, phenological, economic, epidemiological, and bioclimatological reasons. This research identifies spatial and temporal changes over the last several decades in GSL, along with the day-of-year of the last spring freeze and first autumn freeze, for the northeastern United States – a region particularly susceptible to such changes due to the large population and intense economic activities. Results suggest that growing season has significantly increased in length since 1980 as compared to prior to 1980, and both spatial and temporal variation in GSL has decreased for the region over time. Changes to GSL for this region are driven more by a shift in the first autumn freeze date than the last spring freeze date. The areas of greatest increase in GSL in the pre- vs. post-1980 period tend to be in the high elevations, near large water bodies, and near the largest cities. Results will assist environmental planners as they prepare mitigation and adaptation strategies amid a changing environment.  相似文献   
433.
Artificial ground freezing (AGF) is a commonly used technique in geotechnical engineering for ground improvement such as ground water control and temporary excavation support during tunnel construction in soft soils. The main potential problem connected with this technique is that it may produce heave and settlement at the ground surface, which may cause damage to the surface infrastructure. Additionally, the freezing process and the energy needed to obtain a stable frozen ground may be significantly influenced by seepage flow. Evidently, safe design and execution of AGF require a reliable prediction of the coupled thermo‐hydro‐mechanical behavior of freezing soils. With the theory of poromechanics, a three‐phase finite element soil model is proposed, considering solid particles, liquid water, and crystal ice as separate phases and mixture temperature, liquid pressure, and solid displacement as the primary field variables. In addition to the volume expansion of water transforming into ice, the contribution of the micro‐cryo‐suction mechanism to the frost heave phenomenon is described in the model using the theory of premelting dynamics. Through fundamental physical laws and corresponding state relations, the model captures various couplings among the phase transition, the liquid transport within the pore space, and the accompanying mechanical deformation. The verification and validation of the model are accomplished by means of selected analyses. An application example is related to AGF during tunnel excavation, investigating the influence of seepage flow on the freezing process and the time required to establish a closed supporting frozen arch. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
434.
The backward‐averaged iterative two‐source surface temperature and energy balance solution (BAITSSS) model was developed to calculate evapotranspiration (ET) at point to regional scales. The BAITSSS model is driven by micrometeorological data and vegetation indices and simulates the water and energy balance of the soil and canopy sources separately, using the Jarvis model to calculate canopy resistance. The BAITSSS model has undergone limited testing in Idaho, United States. We conducted a blind test of the BAITSSS model without prior calibration for ET against weighing lysimeter measurements, net radiation, and surface temperature of drought‐tolerant corn (Zea mays L. cv. PIO 1151) in a semiarid, advective climate (Bushland, Texas, United States) in 2016. Later in the season (20 days), BAITSSS consistently overestimated ET by up to 3 mm d?1. For the entire growing season (127 days), simulated versus measured ET resulted in a 7% error in cumulative ET, RMSE = 0.13 mm h?1, and 1.70 mm d?1; r2 = 0.66 (daily) and r2 = 0.84 (hourly); MAE = 0.08 mm h?1 and 1.24 mm d?1; and MBE = 0.02 mm h?1 and 0.58 mm d?1. The results were comparable with thermally driven instantaneous ET models that required some calibration. Next, the initial soil water boundary condition was reduced, and model revisions were made to resistance terms related to incomplete cover and assumption of canopy senescence. The revisions reduced discrepancies between measured and modelled ET resulting in <1% error in cumulative ET, RMSE = 0.1 mm h?1, and 1.09 mm d?1; r2 = 0.86 (daily) and r2 = 0.90 (hourly); MAE = 0.06 mm h?1 and 0.79 mm d?1; and MBE = 0.0 mm h?1 and 0.17 mm d?1 and generally mitigated the previous overestimation. The advancement in ET modelling with BAITSSS assists to minimize uncertainties in crop ET modelling in a time series.  相似文献   
435.
粉土在中国分布广泛,工程中大量涉及,常表现为冻胀敏感性,在冻土地区工程建设中需重点考虑其冻胀特性。为减少粉土冻胀对工程的影响,基于环保的理念,以防腐处理后的麦秸秆作为加筋材料,将其切断后随机掺入粉土中;并对粉土和秸秆加筋粉土试样分别进行了开敞系统下的一维冻胀试验,重点研究了秸秆掺量和长度对粉土冻胀特性的影响。结果表明:秸秆加筋对粉土的冻胀有明显的抑制作用,少量的掺加(0.2%、0.4%)可将接近强冻胀的粉土改良为弱冻胀或不冻胀;在其他条件相同的情况下,试验范围内粉土的冻胀率随秸秆掺量的增加而线性增大,但总体远小于未改良土;秸秆掺量一定时,存在最优秸秆长度,在该长度下,秸秆加筋粉土的冻胀变形量和冻胀率均最小。  相似文献   
436.
基于广义Winkler弹性地基梁理论的梯形渠道冻胀力学模型   总被引:2,自引:0,他引:2  
寒区渠道衬砌冻胀破坏现象普遍,而渠道的防冻工程设计大多依赖工程实践经验和定性认识,具有一定的随意性和盲目性,对衬砌结构所受的冻胀力计算缺乏简明、合理的方法。考虑冻土与衬砌的相互作用和冻土地基的连续性,基于广义Winkler地基梁理论并结合有限差分法,推导了渠道衬砌板冻胀挠曲线微分方程,建立了梯形渠道冻胀力学模型,给出了衬砌渠道法向冻胀力及切向冻结力的计算方法。同时,考虑渠道衬砌冻胀破坏的极限承载力以及冻胀过程中坡脚上抬位移对实际冻胀力的削减和释放效应,避免了冻胀力及衬砌结构内力计算值过大。为验证模型的合理性,以甘肃省靖会总干渠梯形渠道为研究对象,对其进行冻胀破坏计算。结果表明:模型由于考虑了衬砌结构与冻土间的相互作用,渠道衬砌板法向冻胀力呈非线性分布,修正了工程力学模型线性分布假设;与工程力学模型相比,冻胀力数值在坡脚处增大、跨中减小、底板上增大,计算结果更符合工程实际。研究提出的冻胀力学模型科学合理,简便快捷,具有更好的通用性,可为寒区渠道的抗冻胀设计提供参考。  相似文献   
437.
双排桩支护组合体系作为一种新型悬臂类支护结构,其整体刚度的提升有利于保持基坑边侧的安全稳定。本文依托于张家口万全区某双排桩基坑支护工程案例,以现有双排桩冠梁刚度系数计算方法为基础,引入冠梁与连梁作用效应系数优化改进考虑连梁和冠梁作用的基坑矩形双排桩支护结构横向支撑刚度的计算方法,并对双梁组合支护体系下不同土性对双排桩前后排桩桩身最大横向位移的影响进行探讨。结果显示:(1)在双排桩结构计算中需考虑冠梁与连梁对双排支护桩的共同横向约束作用,并将冠梁与连梁的刚性连接作为一个整体以提高矩形双排桩双梁横向支撑刚度系数。(2)双梁组合支护体系组合刚度对桩顶位移有较大影响,组合刚度为40~50 MN/m下的位移与观测值较为贴近;冠梁计算长度与引入的冠梁与连梁作用效应系数对双梁组合支护体系组合刚度影响较大,计算长度对组合刚度呈负相关,效应系数对组合刚度呈正相关。(3)双梁组合支护体系下双排桩横向支撑刚度受前后排桩竖向与横向位移差影响,前后排桩桩身最大横向位移受土层内摩擦角、黏聚力和土体水平抗力比例系数影响;改变抗拉强度不会影响双排桩桩体位移。在基坑埋深以下及桩底范围内桩身存在位移拐点,拐点处各不同内摩擦角、不同黏聚力条件下位移相等。  相似文献   
438.
土工袋能够有效地约束袋内土体,具有良好的滤水保土作用,可以用于地基抗液化,但土工袋抗液化性能尚未有系统及深入的研究。开展了一系列小振动台试验,验证土工袋垫层的抗液化效果,研究了振动加速度、土工袋层数和排列方式对抗液化性能的影响。结果表明:土工袋具有良好的抗液化效果,袋内土体的超静孔压比小于同深度处周围的土体;土工袋垫层的排水性能是在土工袋本身具有良好透水性的基础上,孔隙水会沿着土工袋与土体的界面以及袋间的空隙排出;相较于不透水刚性垫层,振动过程中土工袋垫层表面基本保持水平,发挥出较好的变形协调性;土工袋层数增加及交错式排列对抗液化效果有利。  相似文献   
439.
刘润  尹瑞龙  梁超  陈广思 《岩土力学》2023,44(1):232-240
随着当前海上风电装机容量逐渐增加,超大直径钢管桩基础得到了广泛应用。桩径的增加改变了桩-土相互作用模式,现行规范中钢管桩内侧摩阻力计算方法的适用性有待商榷。通过离心模型试验,采用双壁板桩和管桩模型揭示了黏土中有限范围土压力与不同桩径的内侧摩阻力发挥规律;采用有限元数值分析方法,开展了内侧摩阻力发挥规律的影响因素分析,建立了钢管桩内侧摩阻力计算方法,并与离心机试验结果进行了对比验证。结果表明:随着桩径增大,桩内壁土压力增大,内侧摩阻力也随之增大,并沿桩深呈指数型分布,其发挥范围为距桩端5倍桩径以内;提出的钢管桩内壁侧摩阻力计算方法与离心机试验结果吻合良好。  相似文献   
440.
史蓝天  李传勋  杨洋 《岩土力学》2023,44(1):183-192
竖井排水固结法中井阻随时空演变(即由淤堵和弯折所引起的竖井排水能力下降)的现象已引起广泛关注,且变井阻对竖井地基固结速率的影响不容忽略。但目前能同时考虑变荷载及井阻随时间和空间变化的固结解析解还鲜有报道。考虑井阻随时空演变过程,引入实际中广泛采用的单级或多级加载模式,建立了竖井地基固结模型,并应用分离变量法获得固结模型的解析解答。通过与已有的解析解、有限差分解及工程实测值进行对比分析,充分验证了该模型的正确性。通过大量的计算,分析变井阻参数对竖井地基固结性状的影响。结果表明:竖井地基固结速率随竖井最终排水能力的增大而加快,随深度井阻参数及时间井阻参数的增大而减缓,且时间井阻参数的影响更为显著。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号