首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   10篇
  国内免费   10篇
地球物理   31篇
地质学   45篇
海洋学   5篇
综合类   1篇
自然地理   9篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
11.
加利福尼亚弧-盆-沟体系的地质特征   总被引:1,自引:0,他引:1       下载免费PDF全文
加利福尼亚中生代弧-盆-沟系的构造和演化模式一向为世人所重视。作者应邀有机会对加州内华达岛弧地块、弗兰西斯科杂岩和大谷弧前盆地进行了实地地质考察。本文仅就这3个岩性-构造单元的一些独特地质特征和地质景观作一简介。  相似文献   
12.
广西凭祥中三叠世盆地沉积特征与构造属性分析   总被引:2,自引:0,他引:2  
凭祥中三叠世盆地位于印支地块与华南地块碰撞拼合的缝合带内,记录了沿华南地块南缘展布的古特提斯分支洋盆俯冲闭合、印支地块与华南地块碰撞拼合的过程。本文通过大比例尺实测地质剖面,详细测量了凭祥盆地沉积相序及其组合变化,分析了不同相序的沉积环境及其物源,并探讨了盆地构造属性。结果表明,凭祥盆地主要充填有深水盆地相、浊积扇相和三角洲相等不同环境的沉积物。中三叠世期间盆地呈现为一系列因碰撞拼合作用形成的构造高地间夹深谷的岩相古地理面貌。深水盆地相以发育大套深灰色泥页岩和裹夹碎屑流沉积为特征,碎屑流沉积发育于构造高地陡坡一侧。浊积扇相以发育槽模、正粒序、爬升波纹层理、包卷层理、双向交错层理、透镜状层理、平行层理为特征。三角洲相以发育大型板状交错层理、潮沟、厚层透镜状砂体和砖红色泥岩为特征,类似发育于俯冲汇聚环境下的牙买加型扇三角洲,可能发育于构造高地缓坡一侧。沉积作用分析表明,主要存在碎屑流、浊流等重力流作用,并识别出底流作用。古水流分析表明存在向南和向北两个方向的物质搬运。岩相学特征表明盆地砂岩成分成熟度和结构成熟度均较低,物源为再旋回造山带或碰撞造山带。本文研究结果认为:凭祥盆地是一个伴随古特提斯分支洋盆俯冲闭合而被强烈改造的残余弧前盆地,时空上与之相配套是北泗组岛弧型流纹斑岩。该弧盆系统可能于晚二叠世末开始发育,中三叠世末结束沉积充填,暗示印支地块和华南地块最终于中三叠世碰撞拼合。  相似文献   
13.
俯冲-增生型造山带增生楔流体研究进展   总被引:3,自引:0,他引:3  
俯冲-增生型造山带弧前增生楔流体的特点为:盐度低、氯化物含量异常低,并含有丰富的CO2和CH4。流体以扩散式或沿断层带渠道式活动;泥火山、张裂隙充填脉、碳酸盐壳、深海生物群是流体活动的直接体现;流体活动影响着增生楔的内部结构和构造样式;增生楔中流体活动特征的研究对研究造山带的地质演化及矿床成因具有重要意义。  相似文献   
14.
CHRONOSTRATIGRAPHY,SEDIMENTATION AND EVOLUTION OF THE XIGAZE FOREARC BASIN: IMPLICATIONS FOR DYNAMIC EVOLUTION OF THE YARLUNG ZANGBO SUTURE ZONE1 All埁greCJ,CourtillotV ,TapponnierP ,etal.StructureandevolutionoftheHimalaya Tibetorogenicbelt[J] .Nature,1984 ,30 7:17~ 2 2 . 2 CoulonC ,MaluskiH ,BollingerC ,etal.MesozoicandCenozoicvolcanicrocksfromcentralandsouthernTibet:3 9Ar 40 Ardating ,petrotogicalcharacteristicsandgeodyn…  相似文献   
15.
Kosuke  Maehara  Jinichiro  Maeda 《Island Arc》2004,13(3):452-465
Abstract   High-Ca boninitic inclusions are found in primitive low-K tholeiite from Mukoojima (Mukoo-Jima), an islet in the Hahajima Island group, Bonin (Ogasawara) forearc, Japan. While Chichijima Island group, 50 km north of Hahajima Island group, is well known as a type locality of boninite, there has been no report of boninitic rocks from the Hahajima Island group. The high-Ca boninitic inclusions are aphanitic and contain olivine, Ca-rich clinopyroxene, plagioclase, chromian spinel, opaque minerals and dark brown glass. The mode of occurrence of the inclusions and host tholeiite under the microscope indicates mingling of these two magmas, suggesting intimate association in space and time of the boninite and primitive tholeiite magmas around the Hahajima Island group in Paleogene time. Primitive compositions and slightly different Sr and Nd isotopic ratios suggest that these two magmas are derived from two distinct mantle sources. These two mantle sources were present at the same time around the Hahajima Island group, southern Bonin forearc. The source of the high-Ca boninite was higher in water content and/or shallower in depth compared to that of the primitive tholeiite.  相似文献   
16.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   
17.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   
18.
Satoshi  Hirano  Yoshiaki  Araki  Koji  Kameo  Hiroshi  Kitazato  Hideki  Wada 《Island Arc》2006,15(3):313-327
Abstract   A drilling and coring investigation of the Sagara oil field, central Honshu, Japan, was conducted to contribute to the understanding of hydrocarbon migration processes in a forearc basin. Core samples were analyzed to determine lithology, physical properties (specifically gas permeability) and the characteristics of oil occurrence. Gas permeability values greater than approximately 10−11 m2 constitute the basic precondition for any lithology to serve as a potential fluid conduit or reservoir in the Sagara oil field. Cores recovered from the 200.6-m-deep borehole were primarily composed of alternating siltstone, sandstone and conglomerate, all of which are correlated to the late Miocene Sagara Group. Both sandstone and conglomerate can be classified into two types, carbonate-cemented and poorly to non-cemented, based on matrix material characteristics. Oil stains are generally absent in the former lithology and more common in the latter. Variations in physical properties with respect to gas permeability values are directly related to the presence and character of carbonate cement, with higher permeabilities common in poorly to non-cemented rocks. The relationships between lithology, oil-staining, cementation and permeability indicate that cementation preceded oil infiltration and that cementation processes exerted significant control on the evolution of the reservoir.  相似文献   
19.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   
20.
This paper examined sequence‐stratigraphic features of a gravelly fluvial system of the Iwaki Formation, which developed in a forearc‐basin setting in Northeast Japan during the Eocene through Oligocene. On the basis of three‐dimensional architectural element analysis, we discriminated three major cycles of channel complexes, which contain ten component channel deposits in total in the fluvial succession. Component channel deposits in the uppermost part of each cycle are sandier and associated with overbank muddy deposits and coal beds as compared with those in the lower part of the cycle. Mean clast‐size also decreases upsection in the entire gravelly fluvial deposits. The fluvial succession is interpreted to have been deposited in response to an overall rise in relative sea level that was superimposed by three short‐term relative sea‐level rises on the basis of vertical stacking patterns and component lithofacies features of channel deposits, and of correlation of the fluvial succession with an age‐equivalent marine succession in an area about 50 km offshore. However, geometry and stacking patterns of the channel complexes do not exhibit any distinct temporal variation and amalgamated channel and bar deposits are dominant throughout the transgressive fluvial succession. On the other hand, an overall fining‐upward pattern of the entire Iwaki Formation fluvial deposits in association with three component fining‐upward patterns is distinct, and is interpreted to be consistent with the tenet of the standard fluvial sequence‐stratigraphic models. This indicates that the present example represents one type of variation in the standard fluvial sequence‐stratigraphic models, possibly reflecting the forearc‐basin setting, which is generally represented by higher valley slope, higher shedding of coarse‐grained sediments, and shorter longitudinal profiles to the coastal area as compared with a passive‐continental‐margin setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号