首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  国内免费   6篇
地球物理   19篇
地质学   30篇
海洋学   8篇
综合类   3篇
自然地理   37篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有97条查询结果,搜索用时 171 毫秒
41.
In this study, based on a 2-D thermomechanical finite element model, the uplift of the Transantarctic Mountains (TAM) is discussed in relation to the flexural uplift of a rheologically layered lithosphere, which is described by Vening-Meinesz's cantilever kinematics. The general model behaviour shows that the thickness of the crust and the geothermal gradient in the lithosphere are the principal factors in controlling the effective elastic thickness ( T e). Although T e is also significantly dependent on the magnitude of the uplift and the wet or dry rheological condition of rocks, these two factors do not have a dominant influence on the half-wavelength of the TAM. The model with a plausible crustal structure beneath Antarctica shows that the thermal structure beneath East Antarctica is the critical factor, controlling the half-wavelength of the TAM. If there is a significant radiogenic heat source in the Antarctic lithosphere, T e beneath East Antarctica is estimated to be 50 km, at most, and the lithosphere has no potential to explain an exceptionally large-scale half-wavelength of the TAM. Even for the model without a heat source, if East Antarctica is significantly thermally influenced by West Antarctica, T e is estimated to be about 60 km, and it is difficult to reproduce the half-wavelength of the TAM. Contrarily, when a radiogenic heat source is absent and the thermal structure beneath East Antarctica is not significantly affected by that beneath West Antarctica, the rheological structure beneath East Antarctica has the potential to reproduce the half-wavelength of the TAM ( T e∼ 100 km). Thus, the presence of a radiogenic heat source in the crust and mantle and the thermal influence of West Antarctica on East Antarctica are crucial factors in the reproduction of the half-wavelength found in the TAM.  相似文献   
42.
A beam–column‐type finite element for seismic assessment of reinforced concrete (R/C) frame structures is presented. This finite element consists of two interacting, distributed flexibility sub‐elements representing inelastic flexural and shear response. Following this formulation, the proposed model is able to capture spread of flexural yielding, as well as spread of shear cracking, in R/C members. The model accounts for shear strength degradation with inelastic curvature demand, as well as coupling between inelastic flexural and shear deformations after flexural yielding, observed in many experimental studies. An empirical relationship is proposed for evaluating the average shear distortion of R/C columns at the onset of stirrup yielding. The proposed numerical model is validated against experimental results involving R/C columns subjected to cyclic loading. It is shown that the model can predict well the hysteretic response of R/C columns with different failure modes, i.e. flexure‐critical elements, elements failing in shear after flexural yielding, and shear‐critical R/C members. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
43.
44.
The seafloor topography of a slow-spreading ridge shows a number of well-documented regularities at the ridge segment scale as the result of the complex interplay between ridge-axis magmatic and tectonic processes. This paper describes the results of a detailed analysis of the seafloor topography of the Mid-Atlantic Ridge near the Atlantis transform, where marine gravity data provide independent, although non-unique, constraints on subseafloor density structure. Using a combined topography and gravity data set, we identified the specific contributions of subseafloor density structure to the seafloor topography. We show that the observed along-axis deepening (0.3–0.8 km) from the midpoint of a ridge segment towards the non-transform offsets in the study area can be explained by the vertical deflection of a zero-age plate in response to along-axis crustal thickness variations. However, this effect can only account for 50–60 per cent of the observed 1.5–1.7 km deepening towards the Atlantis transform, suggesting the presence of significant stresses in the lithosphere near a transform. Results of plate flexural calculations also predict a more elevated rift flank at the inside corner of the ridge–transform intersection than at the conjugate outside corner. Such an asymmetry in rift flank topography is calculated to be greatest near a transform fault with a significant volume of deep transform valley and when adjacent plates across the transform fault are mechanically decoupled or only weakly coupled. Together these results illustrate the complex interplay between various tectonic processes at a slow-spreading ridge.  相似文献   
45.
在回顾五峰组-龙马溪组两个地层单位沿革并重申其定义与划分基础上,重建了华南五峰组-龙马溪组及其相关地层序列的区域地层框架.根据这一框架中奥陶-志留纪黑色笔石岩系的穿时性、以及相关地层序列纵向演化特征与岩石圈板块挠曲模式的联系,结合所发现钾质斑脱岩源岩的板块汇聚背景,以及该阶段海平面升降与黑色岩系对应关系,提出控制该阶段华南黑色岩系的时空展布格局的主要因素有两个,即该阶段自南东向北西的华夏地块与扬子地块幕式汇聚过程所产生的岩石圈板块挠曲-周缘前陆盆地的同向迁移,以及该阶段两次全球性的三级海平面变化快速上升阶段所导致的缺氧及欠补偿水体.本文认为,要在华南奥陶-志留纪(包括其他断代)寻找其他可能的烃源岩层位,可能要首先考虑类似背景下这两种因素综合作用所导致的快速沉降及深水缺氧的沉积环境.  相似文献   
46.
47.
Multichannel seismic reflection profile data have been used to determine the internal structure of Mesozoic oceanic crust in the vicinity of the Cape Verde islands. The data show the oceanic crust to be characterized by both dipping and sub-horizontal reflectors. Several lines of evidence argue against the reflectors being scattering artifacts arising, for example, from rough basement topography. Instead, the reflectors are attributed to tectonic and magmatic processes associated with the accretion of oceanic crust at the Mid-Atlantic Ridge. The upper crust shows variable reflectivity due to both dipping and sub-horizontal events. We interpret the dipping reflectors, which have been identified on both ridge-normal and ridge-parallel profiles, as sub-surface expressions of normal faults that formed at or near the Mid-Atlantic Ridge. There is no evidence that the faults are caused by loading of the oceanic crust by either the Cape Verde islands or their associated topographic swell. Some faults, however, can be traced into the overlying sediments suggesting they may have been re-activated since their formation at the ridge. The origin of the sub-horizontal reflectors is not as clear. We believe them to be boundaries of different igneous lithologies, such as that between basalts and gabbros. The lower crust is highly reflective in some areas, whereas in others only a few dipping and sub-horizontal reflectors are observed. Some of the dipping reflectors can be traced into the upper crust, suggesting they are also normal faults. Others, however, appear to be confined to the lower crust. The sub-horizontal, discontinuous, reflectors about 2.0–2.5 seconds two-way travel time below the top of oceanic basement are attributed to the Moho.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号