全文获取类型
收费全文 | 86篇 |
免费 | 6篇 |
国内免费 | 6篇 |
专业分类
地球物理 | 19篇 |
地质学 | 30篇 |
海洋学 | 9篇 |
综合类 | 3篇 |
自然地理 | 37篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 3篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 4篇 |
2014年 | 3篇 |
2013年 | 5篇 |
2012年 | 3篇 |
2011年 | 3篇 |
2009年 | 4篇 |
2008年 | 4篇 |
2007年 | 7篇 |
2006年 | 6篇 |
2005年 | 2篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 4篇 |
2001年 | 5篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 3篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 1篇 |
排序方式: 共有98条查询结果,搜索用时 21 毫秒
11.
12.
CRUSTAL CONFIGURATION OF NW HIMALAYA: EVIDENCES FROM THE ISOSTATIC AND FLEXURAL ANALYSIS OF GRAVITY DATA 相似文献
13.
库车坳陷充填有厚约4000~5000 m(局部最大厚度可达6000 m)的中生界陆相地层。地面特征和地震资料表明,库车坳陷北部地区中生界与下伏强烈变形、变质的古生界呈角度不整合接触,南部地区中生界与下伏寒武系-奥陶系呈平行不整合或微角度不整合接触。按照地层厚度趋势推测的中生界在山前地带有强烈的剥蚀,沉积厚度轴线位于南天山晚古生代造山楔之上,显示库车坳陷中生代盆地是上叠在塔里木克拉通北部边缘隆起和南天山晚古生代造山楔过渡带上的拗陷盆地。三叠纪-侏罗纪沉降-沉积中心向后陆(造山带)迁移,早白垩世向前陆迁移,且盆地同沉积期区域规模的断裂活动不明显,据此推测晚古生代造山作用后的岩石圈热作用及地壳均衡作用是中生代盆地沉降的主控动力学因素。 相似文献
14.
Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan. The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ~23 and ~14 Ma. The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts. 相似文献
15.
16.
Mikael Beuthe 《Geophysical Journal International》2008,172(2):817-841
Planetary topography can either be modelled as a load supported by the lithosphere, or as a dynamic effect due to lithospheric flexure caused by mantle convection. In both cases the response of the lithosphere to external forces can be calculated with the theory of thin elastic plates or shells. On one-plate planets the spherical geometry of the lithospheric shell plays an important role in the flexure mechanism. So far the equations governing the deformations and stresses of a spherical shell have only been derived under the assumption of a shell of constant thickness. However, local studies of gravity and topography data suggest large variations in the thickness of the lithosphere. In this paper, we obtain the scalar flexure equations governing the deformations of a thin spherical shell with variable thickness or variable Young's modulus. The resulting equations can be solved in succession, except for a system of two simultaneous equations, the solutions of which are the transverse deflection and an associated stress function. In order to include bottom loading generated by mantle convection, we extend the method of stress functions to include loads with a toroidal tangential component. We further show that toroidal tangential displacement always occurs if the shell thickness varies, even in the absence of toroidal loads. We finally prove that the degree-one harmonic components of the transverse deflection and of the toroidal tangential displacement are independent of the elastic properties of the shell and are associated with translational and rotational freedom. While being constrained by the static assumption, degree-one loads can deform the shell and generate stresses. The flexure equations for a shell of variable thickness are useful not only for the prediction of the gravity signal in local admittance studies, but also for the construction of stress maps in tectonic analysis. 相似文献
17.
半地堑盆地演化机制的粘弹塑数值模拟 总被引:1,自引:1,他引:1
利用新近完成的粘弹塑构造模拟软件包对盆地的动力学演化进行了一系列模拟。文中主要概述不同厚度的上地壳中由高角度平面正断层界定的半地堑盆地的演化模拟。模拟时上地壳被考虑成具有Byerlee型强度包络 ,并且位于无粘性基底之上 ,盆地中由密度比地壳密度小的沉积物充填。计算了以一定增量逐渐拉伸上地壳层时各个阶段的非静岩应力 (Nonlitho staticstress)、塑性破裂 (Plasticfailure)分布及挠曲剖面 (Flexureprofile)。塑性变形使得有效弹性厚度减小。到切穿破裂出现以前 ,断层断距一直增加 ,之后 ,断距基本停止增加。所以 ,地壳强度使沉降量和隆升量均有极限。上地壳层厚度和沉积物密度是控制盆地宽度和极限深度的两个重要因素 ,上地壳层厚度增加或者沉积物密度加大都使盆地宽度和深度增大。模拟结果可以解释一些大陆裂谷盆地的宽度和沉积深度。 相似文献
18.
Reinforced concrete columns with insufficient transverse reinforcement and non‐seismic reinforcement details are vulnerable to brittle shear failure and to loss of axial load carrying capacity in the event of a strong earthquake. In this paper, a procedure is presented after examining the application of two macro models for displacement‐based analysis of reinforced concrete columns subjected to lateral loads. In the proposed model, lateral load‐deformation response of the column is simulated by estimating flexural and shear deformation components separately while considering their interaction and then combining these together according to a set of rules depending upon column's yield, flexural and shear strengths. In addition, lateral deformation caused by reinforcement slip in beam–column joint regions and buckling of compression bars are taken into account and considered in the analysis. Implementation of the proposed procedure produces satisfactory lateral load–displacement relationships, which are comparable with experimental data. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
Erosion-driven uplift of the modern Central Alps 总被引:2,自引:0,他引:2
Jean-Daniel Champagnac Fritz Schlunegger Kevin Norton Friedhelm von Blanckenburg Luca M. Abbühl Marco Schwab 《Tectonophysics》2009,474(1-2):236
We present a compilation of data of modern tectono-geomorphic processes in the Central European Alps which suggest that observed rock uplift is a response to climate-driven denudation. This interpretation is predominantly based on the recent quantification of basin-averaged Late Holocene denudation rates that are so similar to the pattern and rates of rock uplift rates as determined by geodetic leveling. Furthermore, a GPS data-based synthesis of Adriatic microplate kinematics suggests that the Central Alps are currently not in a state of active convergence. Finally, we illustrate that the Central Alps have acted as a closed system for Holocene redistribution of sediment in which the peri-Alpine lakes have operated as a sink for the erosional products of the inner Central Alps.While various hypotheses have been put forward to explain Central Alpine rock uplift (e.g. lithospheric forcing by convergence, mantle processes, or ice melting) we show with an elastic model of lithospheric deformation, that the correlation between erosion and rock uplift rates reflects a positive feedback between denudation and the associated isostatic response to unloading. Thus, erosion does not passively respond to advection of crustal material as might be the case in actively converging orogens. Rather, we suggest that the geomorphic response of the Alpine topography to glacial and fluvial erosion and the resulting disequilibrium for modern channelized and associated hillslope processes explains much of the pattern of modern denudation and hence rock uplift. Therefore, in a non-convergent orogen such as the Central European Alps, the observed vertical rock uplift is primarily a consequence of passive unloading due to erosion. 相似文献
20.
Analytical and empirical models for predicting the drift capacity of modern unreinforced masonry walls 下载免费PDF全文
Displacement‐based seismic assessment of buildings containing unreinforced masonry (URM) walls requires as input, among others, estimates of the in‐plane drift capacity at the considered limit states. Current codes assess the drift capacity of URM walls by means of empirical models with most codes relating the drift capacity to the failure mode and wall slenderness. Comparisons with experimental results show that such relationships result in large scatter and usually do not provide satisfactory predictions. The objective of this paper is to determine trends in drift capacities of modern URM walls from 61 experimental tests and to investigate whether analytical models could lead to more reliable estimates of the displacement capacity than the currently used empirical models. A recently developed analytical model for the prediction of the ultimate drift capacity for both shear and flexure controlled URM walls is introduced and simplified into an equation that is suitable for code implementation. The approach follows the idea of plastic hinge models for reinforced concrete or steel structures. It explicitly considers the influence of crushing due to flexural or shear failure in URM walls and takes into account the effect of kinematic and static boundary conditions on the drift capacity. Finally, the performance of the analytical model is benchmarked against the test data and other empirical formulations. It shows that it yields significantly better estimates than empirical models in current codes. The paper concludes with an investigation of the sensitivity of the ultimate drift capacity to the wall geometry, static, and kinematic boundary conditions. 相似文献