首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   48篇
  国内免费   213篇
测绘学   1篇
大气科学   283篇
地球物理   21篇
地质学   26篇
海洋学   91篇
天文学   2篇
综合类   6篇
自然地理   22篇
  2024年   2篇
  2023年   7篇
  2022年   10篇
  2021年   13篇
  2020年   22篇
  2019年   20篇
  2018年   19篇
  2017年   18篇
  2016年   13篇
  2015年   12篇
  2014年   22篇
  2013年   33篇
  2012年   24篇
  2011年   28篇
  2010年   16篇
  2009年   24篇
  2008年   14篇
  2007年   24篇
  2006年   15篇
  2005年   16篇
  2004年   12篇
  2003年   16篇
  2002年   11篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   11篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1988年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
31.
In this paper, we summarized the characteristics of tropical cyclones (TC) activity over the western North Pacific in 2004 and analyzed their causation. Compared with the normal, the annual frequency of TC in 2004 was slightly higher, tropical cyclones in 2004 had a longer life span and occurred in a concentrated period, the source of TC were situated eastward; in all tracks of TC, the recurvature tracks took up larger proportion, the landfall regions of TC were located northward, which concentrated from East China to Japan. The primary causes were revealed as follows. Firstly, the intensity and area of the western North Pacific subtropical high was stronger and larger than usual respectively, and its ridge was frequently in the form of cells and stretched northwestward. Secondly, the convergence of intertropical convergence zone (ITCZ) was reinforced and the convergence zone moved more eastward than average. Thirdly, the meridionality of the westerlies was larger than average and the cell-shaped ridge formed a saddle region, which is in favor of TC northward motion and recurature.  相似文献   
32.
2006年6~8月共有6个热带气旋影响广西,热带气旋灾害所造成的直接经济损失达44亿元(占所有气象灾害造成的直接经济损失的71%)。该文对热带气旋灾害性天气及其影响进行了评估,并对主要的灾害现象及所造成的损失进行了分析。  相似文献   
33.
总结回顾了集合敏感性分析(ESA)在诊断中纬度高影响天气预报不确定性中的应用。作为一个简单高效且不需要大量计算资源的方法,集合敏感性分析主要被应用在中纬度气旋、台风或飓风的温带转换,以及在强对流过程中诊断预报误差和不确定性的来源。集合敏感性方法极有灵活性,可以根据实际需要改变不同的预报变量和初始场。在对2010年美国东岸圣诞节暴风雪的分析中,集合敏感性分析通过三种形式来诊断了预报不确定性的初值敏感性,即基于EOF分析的敏感性、预报差别的敏感性,以及基于短期预报误差的向前积分敏感性回归。三种方法证实气旋路径的不确定性主要和位于美国南部大平原的短波槽初始误差相关。此外,气旋强度的不确定性还和产生于北太平洋向下游延伸的罗斯贝波列相关。集合敏感性分析方法对于分析中纬度气旋的不确定性、诊断初值敏感性、分析误差发展机制都非常有效。集合敏感性分析也被应用于分析台风/飓风的温带气旋转换过程的不确定性。在对2019年美国首个主要登陆台风Dorian的分析中发现,加拿大CMC的集合预报主要不确定性来自于强度的不确定性,而这个不确定性与初始时刻的大尺度环流型有关,较连贯的信号可以追溯至东北太平洋的前倾槽。而NCEP和ECMWF的不确定性主要在于气旋位置的东北—西南向移动,而敏感性主要和飓风系统本身(即其北部低压区和中纬度槽)的锁相有关。分析结果进一步验证了集合敏感性分析对诊断模式之间的不一致性,以及模式成员之间不一致性的不确定性来源和发展过程的可靠性。集合敏感性分析方法综合了集合预报、资料同化和敏感性分析,因此对于资料同化技术改进、诊断模式误差(或者缺陷)、附加(目标)观测最优策略,以及评估观测对预报的影响等都有重要意义。同时可以更有效地利用集合预报信息,帮助预报员提高情景意识,最终减少高影响天气预报中的决策失误。  相似文献   
34.
A detailed barotropic, baroclinic and combined barotropic-baroclinic stability analysis has been carried out with mean monsoon zonal currents over western India, eastern India and S.E. Asia. The lower and middle tropospheric zonal wind profiles over western India are barotropically unstable. The structure and growth rate of these modes agree well with the observed features of the midtropospheric cyclones. Similar profiles over eastern India and S.E. Asia, however, are barotropically stable. This is attributed to weak horizontal shear, inherent to these profiles. The upper tropospheric profiles, on the other hand, are barotropically unstable throughout the whole region. The features of these unstable modes agree with those of observed easterly waves. The baroclinic and combined barotropic-baroclinic stability analyses show that the baroclinic effects are not important in tropics. Though the barotropic instability of the mean zonal current seems to be res ponsible for the initial growth of the mid-tropospheric cyclones, neither barotropic nor baroclinic instability of the mean zonal current seem to explain the observed features of the monsoon depressions.  相似文献   
35.
In the context of a model of tropical cyclone intensity based on an improved meso-scaleatmospheric model, numerical simulation is performed of the track and intensity variation oftropical cyclones (TC) arising from sea surface temperature (SST) variation over a specified searegion. Evidence suggests that the model is capable of modeling quite welt the track and intensityof TC: SST variation leads to an abrupt change in the cyclone intensity: the response of thecyclone to the abrupt SST change lasts 8—12 h.  相似文献   
36.
Based on combined Cloud Sat/CALIPSO detections, the seasonal occurrence of deep convective clouds(DCCs) over the midlatitude North Pacific(NP) and cyclonic activity in winter were compared. In winter, DCCs are more frequent over the central NP, from approximately 30°N to 45°N, than over other regions. The high frequencies are roughly equal to those occurring in this region in summer. Most of these DCCs have cloud tops above a 12 km altitude, and the highest top is approximately 15 km. These wintertime marine DCCs commonly occur during surface circulation conditions of low pressure, high temperature, strong meridional wind, and high relative humidity. Further, the maximum probability of DCCs,according to the high correlation coefficient, was found in the region 10°–20° east and 5°–10° south of the center of the cyclones. The potential relationship between DCCs and cyclones regarding their relative locations and circulation conditions was also identified by a case study. Deep clouds were generated in the warm conveyor belt by strong updrafts from baroclinic flows. The updrafts intensified when latent heat was released during the adjustment of the cyclone circulation current. This indicates that the dynamics of cyclones are the primary energy source for DCCs over the NP in winter.  相似文献   
37.
利用1949—2011年CMA-STI热带气旋最佳路径数据集,分析了西北太平洋累积气旋能量(ACE)的年代际变化特征。结果表明,西北太平洋热带气旋(ACE)的年代际变化主要分为1957—1967高值期、1976—1986过渡期和1998—2008低值期。其中强热带风暴(STS)、台风(TY)和超强台风(SuperTY),特别超强台风是决定成分。副热带高压偏弱,垂直风切变偏小,低纬度低空正涡度异常偏东以及低纬度海表面温度(SST)正异常偏东等背景场的年代际特征,有利于形成ACE的年代高值期。  相似文献   
38.
热带气旋各个要素对于海表面降温的影响   总被引:1,自引:0,他引:1  
热带气旋的经过会引起海洋内部强烈的剪切,由剪切不稳定触发的强混合可以将温跃层的冷水卷挟上来,导致海洋混合层加深和海表面温度的下降。本文利用3-Dimensional Price Weller and Pinkel(3DPWP)模式模拟了不同热带气旋下的海表面降温,分别研究了热带气旋各个要素(气旋的强度,最大风速半径和移动速度)对于海表面降温的影响。模拟结果表明,海表面降温的空间分布主要受到气旋移动速度的影响,移动速度越快的降温,右偏现象越明显。海表面降温的幅度以及降温的区域随着气旋强度和最大风速半径的增大而单调递增,随移动速度增加而单调递减。海表面降温与热带气旋3个要素的拟合结果表明,气旋各个要素对于海表面降温影响作用的大小不同:在气旋移动速度较慢(小于4.5m/s)时,海表面降温主要受到气旋级别和移动速度的影响,在气旋移动速度较快(大于4.5m/s)时,气旋移动速度的影响作用减弱,海表面降温主要受气旋级别的影响。气旋最大风速半径的影响作用始终较小。  相似文献   
39.
The data-collection campaign for the 2008 International Polar Year–Circumpolar Flaw Lead System Study saw the Canadian Coast Guard Ship (CCGS) Amundsen, a research icebreaker, overwinter in high-concentration unconsolidated sea ice in Amundsen Gulf. Environmental monitoring continued into the open-water season. During this period, the Amundsen registered five relatively deep mean sea-level pressure minima (less than 100?kPa). Three were selected for further analysis based on season and the nature of the underlying ocean or sea-ice surface: (1) a winter pressure minimum over unconsolidated sea ice, (2) a spring pressure minimum which likely contributed to the break-up of the sea-ice cover on Amundsen Gulf, and (3) a summer pressure minimum over open water. The characteristics of these pressure minima and the impact of their passage on the atmospheric boundary layer and on the sea-ice cover as they crossed Amundsen Gulf were examined. Several features were revealed by the analysis. (1) The winter and summer pressure minima were migratory cyclones accompanied by Arctic frontal waves with characteristics very similar to the polar frontal waves associated with the migratory cyclones found at more southerly latitudes, whereas the spring pressure minimum was attributed to an Arctic frontal trough of low pressure with the cyclonic centre remaining south of the Gulf. (2) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring disrupted the equilibrium that had been established during more settled periods between the atmospheric boundary layer and the mosaic surface (leads, polynyas, and sea ice); however, equilibrium was quickly re-established. (3) In summer, the thermal structure of the lower atmospheric boundary layer persisted through the passage of the frontal-wave cyclone over the open-water surface. (4) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring modified the mesoscale sea-icescape.  相似文献   
40.
Diurnal variation of tropical cyclone (TC) rainfall in the western North Pacific (WNP) is investigated using the high-resolution Climate Prediction Center's morphing technique (CMORPH) products obtained from the National Oceanic and Atmospheric Administration (NOAA). From January 2008 to October 2010, 72 TCs and 389 TC rainfall days were reported by the Joint Typhoon Warning Center's (JTWC) best-track record. The TC rain rate was partitioned using the Objective Synoptic Analysis Technique (OSAT) and interpolated into Local Standard Time (LST). Harmonic analysis was applied to analyze the diurnal variation of the precipitation. Obvious diurnal cycles were seen in approximately 70% of the TC rainfall days. The harmonic amplitude and phase of the mean TC rainfall rate vary with TC intensity, life stage, season, and spatial distribution. On the basis of intensity, tropical depressions (TDs) exhibit the highest precipitation variation amplitude (PVA), at approximately 30%, while super typhoons (STs) contain the lowest PVA, at less than 22%. On the basis of lifetime stage, the PVA in the decaying stage (more than 37%) is stronger than that in the developing (less than 20%) and sustaining (28%) stages. On the basis of location, the PVA of more than 35% (less than 18%) is the highest (lowest) over the high-latitude oceanic areas (the eastern ocean of the Philippine Islands). In addition, a sub-diurnal cycle of TC rainfall occurs over the high-latitude oceans. On the basis of season, the diurnal variation is more pronounced during summer and winter, at approximately 30% and 32%, respectively, and is weaker in spring and autumn, at approximately 22% and 24%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号