首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   74篇
  国内免费   56篇
测绘学   21篇
大气科学   6篇
地球物理   326篇
地质学   186篇
海洋学   58篇
天文学   6篇
综合类   23篇
自然地理   220篇
  2024年   7篇
  2023年   7篇
  2022年   16篇
  2021年   24篇
  2020年   20篇
  2019年   19篇
  2018年   33篇
  2017年   28篇
  2016年   29篇
  2015年   23篇
  2014年   47篇
  2013年   54篇
  2012年   12篇
  2011年   21篇
  2010年   35篇
  2009年   35篇
  2008年   24篇
  2007年   33篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   33篇
  2002年   24篇
  2001年   22篇
  2000年   31篇
  1999年   24篇
  1998年   22篇
  1997年   32篇
  1996年   18篇
  1995年   21篇
  1994年   17篇
  1993年   17篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有846条查询结果,搜索用时 15 毫秒
141.
The zooplankton of oligotrophic lakes in North Patagonia is often dominated by mixotrophic ciliates, particularly Stentor amethystinus and Stentor araucanus. Therefore, we tested whether Stentor spp. (i) is an important food for juvenile endemic (Cheirodon australe, Galaxias maculatus, Odontesthes mauleanum, Percichthys trucha) and introduced (Oncorhynchus mykiss) fish species, and (ii) represents a remarkable grazer of bacteria. Ingestion rates of fish estimated by disappearance of Stentor in feeding experiments ranged between 8 (G. maculatus) and 53 (C. australe) ciliates per fish and day, and assimilation rates measured by using radioactively labelled Stentor ranged between 3 (P. trucha) and 52 (C. australe) ciliates per fish and day. However, although we detected the consumption of Stentor by fish, the daily consumption amounted to at most 0.2% of the fish biomass which can not cover the energy requirement of the fish. Furthermore, the daily consumption was equivalent to a maximum of 1.6% of the Stentor standing stock so that fish predation does not seem to be an important mortality factor for the ciliates. The clearance rate of Stentor sp. on natural bacteria was on average 3.8 μl cil−1 h−1. The daily ingestion (mean 3.9 ng C cil−1 d−1) was about 3.5% of the individual biomass of Stentor sp. Therefore, bacteria ingestion might explain a ciliate growth rate of appr. 1% d−1, which was about 17% of the photosynthesis of endosymbiotic algae. The maximum density of Stentor sp. in the lake could ingest about 1 μg C L−1 d−1 bacteria which is only 3% of average bacterial production. Thus, grazing by Stentor sp. does not seem to be a main loss factor for the bacteria.  相似文献   
142.
Human activities are exposing freshwater ecosystems to a wide range of stressors, whose direct and indirect effects can be alleviated or exacerbated through interactive effects with dynamic environmental drivers. This study used long-term data from two Neotropical lacustrine freshwater systems (Batata Lake, an Amazonian floodplain lake and Imboassica lagoon, an Atlantic coastal lagoon) subjected to different kinds of environmental fluctuations (i.e., flood pulse and sandbar opening) and anthropogenic impacts (i.e., siltation and eutrophication). Our objective was to determine whether the effects of human perturbations are contingent on modifications of important biotic and abiotic characteristics through environmental variability. For both ecosystems, environmental variability consistently interacted with anthropogenic perturbations to alter most of the variables analyzed, such as nutrient dynamics, chlorophyll-a concentration, zooplankton and benthic invertebrate species richness, and temporal community stability, which indicates that interactive effects between environmental variability and anthropogenic perturbations may impact a myriad of ecosystem properties. Furthermore, the nature of these interactive effects was highly dependent on the variable considered and on the ecosystem analyzed. For example, at Imboassica lagoon, sandbar openings interacted synergistically with trophic state to increase the phosphorus concentration in the water column. At Batata Lake, flooding generally alleviated the negative effects of siltation on species richness by both diluting inorganic suspended material concentration and by promoting local recruitment from the regional species pool. Such results indicate that our ability to understand and predict the outcome of anthropogenic impacts on inland aquatic systems can be hampered if we consider human stressors as “static” phenomena disconnected from dynamic interactions with major local environmental drivers.  相似文献   
143.
Lake Caviahue (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano. The lake and the feeding rivers were sampled annually from 1997 till early 2006, including the eruptive period of 2000. Lake Caviahue waters evolved over time, with the most concentrated waters in 2000 during the eruptive period, followed by gradual dilution that was interrupted by renewed acidification in 2003–2004. Inversion of the lake water data and application of a dynamic non-steady state model for the lake provides our best quantitative estimates for the variation in element fluxes over the 9-year period. The model flux results agree well with most of the measured fluxes. The Copahue hydrothermal system had gently declining element fluxes between 1997 and mid-1999, although the lake was still becoming more concentrated. About 2–3 months before the 2000 eruption, element fluxes increased strongly, but the hydrothermal fluxes almost shutoff directly after the main eruptive events. The fluxes of several elements recovered post-2001, with an increase in element fluxes in 2003–2004; the lake became more dilute between 2004 and 2006. The intrusion of new magma into the hydrothermal system just prior to the 2000 eruption led to enhanced water rock interaction, with higher concentrations of the rock forming elements in the fluids, and the hot spring flow rate increased as a result of the higher pressure in the reservoir. The fluids became saturated in alunite and jarosite, and they were already saturated with anhydrite. Precipitation of these minerals possibly led to a decreased permeability of the hydrothermal reservoir, leading to the strongly reduced element fluxes just after the eruption. In addition, K, Al and S were retained in the newly precipitated minerals as well, further diminishing their export. The acidification in 2003–2004 may have resulted from a new small intrusion of magma or resulted from seismic activity that created new permeability and fresh rock surfaces for water rock interaction. The volcano is a significant source of toxic trace elements such as F, As, B and Li as well as a nutrient (P) for the local watershed. Monitoring of the hydrothermal fluids in the river that drains Copahue, especially the S/Cl, Mg/Cl and Mg/K values as well as the magnitude of the element fluxes would provide the best information for eruption forecasting for this volcano.  相似文献   
144.
145.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   
146.
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl, SO42− and F decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring.  相似文献   
147.
Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma–water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.  相似文献   
148.
In the German State Brandenburg, water clarity and the concentrations of the water quality components chlorophyll a, seston and gelbstoff were measured in 27 lakes. Correlation analysis showed, that spectral beam attenuation at 662 and 514 nm was mainly dependent on changes in chlorophyll a concentrations. In the UV-channel at 360 nm, beam attenuation depended mostly on gelbstoff.

Multiple linear regression provided a direct model of beam attenuation at 514 nm with the inputs of inorganic seston, chlorophyll a and gelbstoff. The specific beam attenuation coefficients were comparable to other natural waters around the world. An inverse model is presented, from which gelbstoff and chlorophyll a could be predicted with some accuracy from the inputs of beam attenuation coefficients at 514 and 360 nm. However, it became obvious that biological variability put major constraints on the predictive capacity of both the direct and the inverse model.

Furthermore, we observed a good correspondence of Secchi depth and the inverse of beam attenuation at 514 nm. The predictions of Secchi depth and chlorophyll a concentration from the inverse model were assessed in perspective of using this instrument instead of laborious chemical analysis for future trophic status classification according to LAWA (Länderarbeitsgemeinschaft Wasser). Predictions of trophic status were principally good when using calibrated models, however, quality of classification critically depended on predictions of chlorophyll a.  相似文献   

149.
Unconsolidated, flocculent sediments that are frequently resuspended by wind action are found in many shallow-water lakes. Collecting sediment/water interface cores in such lakes for paleolimnological study may be problematic because it is difficult to determine the depth to the water/sediment interface. Accurately determining this water depth is necessary to guarantee that a piston corer does not penetrate the sediments prior to the drive and to maximize the core length. A simple instrument constructed with inexpensive, readily available components is described. This infrared floc detector (IFD) is used to sense the increased optical density of unconsolidated sediments as the detector is lowered into a lake. The IFD, in effect, yields a precise as well as an accurate measure of water depth. The depth to the water/sediment interface can be measured with an accuracy of approximately 1 cm, provided surface waters are relatively calm.  相似文献   
150.
Hydrologic models are developed for two lakes in interior Alaska to determine quantitative estimates of precipitation over the past 12,500 yrs. Lake levels were reconstructed from core transects for these basins, which probably formed prior to the late Wisconsin. Lake sediment cores indicate that these lakes were shallow prior to 12,500 yr B.P. and increased in level with some fluctuation until they reached their modern levels 4,000-8,000 yr B.P. Evaporation (E), evapotranspiration (ET), and precipitation (P) were adjusted in a water-balance model to determine solutions that would maintain the lakes at reconstructed levels at key times in the past (12,500, 9,000 and 6,000 yr B.P.). Similar paleoclimatic solutions can be obtained for both basins for these times. Results indicate that P was 35-75% less than modern at 12,500 yr B.P., 25-45% less than modern at 9,000 yr B.P. and 10-20% less than modern at 6,000 yr B.P. Estimates for E and ET in the past were based on modern studies of vegetation types indicated by fossil pollen assemblages. Although interior Alaska is predominantly forested at the present, pollen analyses indicate tundra vegetation prior to about 12,000 yr B.P. The lakes show differing sensitivities to changing hydrologic parameters; sensitivity depends on the ratio of lake area (AL) to drainage basin (DA) size. This ratio also changed over time as lake level and lake area increased. Smaller AL to DA ratios make a lake more sensitive to ET, if all other factors are constant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号