首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1689篇
  免费   352篇
  国内免费   400篇
测绘学   20篇
大气科学   125篇
地球物理   609篇
地质学   1009篇
海洋学   306篇
天文学   52篇
综合类   85篇
自然地理   235篇
  2024年   9篇
  2023年   11篇
  2022年   54篇
  2021年   67篇
  2020年   79篇
  2019年   83篇
  2018年   77篇
  2017年   77篇
  2016年   73篇
  2015年   89篇
  2014年   95篇
  2013年   143篇
  2012年   78篇
  2011年   110篇
  2010年   117篇
  2009年   106篇
  2008年   147篇
  2007年   118篇
  2006年   116篇
  2005年   85篇
  2004年   94篇
  2003年   70篇
  2002年   63篇
  2001年   61篇
  2000年   36篇
  1999年   46篇
  1998年   48篇
  1997年   52篇
  1996年   36篇
  1995年   32篇
  1994年   43篇
  1993年   24篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1971年   2篇
排序方式: 共有2441条查询结果,搜索用时 15 毫秒
991.
The discharge and water level of a gaining stream are known to be maintained during dry spells by baseflow, which is defined as discharge from underground storage. However, the effect of baseflow on a real river is not well known because direct measurements of baseflow in field are difficult to conduct. Therefore, this study attempts to clarify the contribution of baseflow to streamflow and the extent to which the water level is maintained even during dry spells. A digital filter technique is applied to the records of daily mean streamflow in order to estimate the amount of baseflow, and the lateral distribution method is applied to irregular cross sections at observational sites to obtain the stage–discharge rate curve. Through a comparison of the observed data and calculation results, the amount of baseflow is estimated across the channel, in addition to the maximum water level retained during dry spells in relation to the baseflow. Finally, based on the results of an energy conservation model, this study proposes that the source of the amount of baseflow estimated across a channel section may be different from that of the water level maintained during dry spells.  相似文献   
992.
Our aim was to quantify the effects of forest plantation and management (clear cut or 30% partial harvest) in relation to pasture, on catchment discharge in southeast Rio Grande do Sul state, Brazil. A paired‐catchment approach was implemented in two regions (Eldorado do Sul and São Gabriel municipalities) where discharge was measured for 4 years at three catchments in each region, two of which were predominantly eucalypt plantation (mainly Eucalyptus saligna, rotation of approximately 7–9 years) with native forest and grass in streamside zones. The third catchment was covered with grazed pasture. Weather, soils, canopy interception, groundwater level, tree growth, and leaf area index were also measured. The 3‐PG process‐based forest productivity model was adapted to predict spatial daily plantation and pasture water balance including precipitation interception, soil evaporation, transpiration, soil moisture, drainage, discharge, and monthly plantation growth. The TOPMODEL framework was used to simulate water pools and fluxes in the catchments. Discharge was higher under pasture than pre‐harvesting plantation and increased for 1–2 years after complete plantation harvest; this change was less pronounced in the catchments under partial harvest. The ratio of discharge to precipitation before harvesting varied from 7% to 13% in the eucalypt catchments and 28% to 29% under pasture. The ratio increases to 23–24% after total harvest, and to 17% after partial harvesting. The ratio under pasture also increases during this period (to 32–44%) owing to increased precipitation. The baseflow, in relation to total discharge, varied from 28% to 62% under Eucalyptus and from 38% to 43% in the pasture catchments. Hence, eucalypt plantations in these regions can be expected to influence discharge regimes when compared with pasture land use, and modelling suggests that partial harvesting would moderate the magnitude of discharge variation compared with a full catchment plantation harvesting. The model efficiency coefficient (Nash–Sutcliffe model efficiency coefficient) varied from 0.665 to 0.799 for the total period of the study. Simulation of alternative harvesting scenarios suggested that at least 20% of the catchment planted area must be harvested to increase discharge. This model could be a useful practical tool in various plantation forestry contexts around the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
Hydrologic models that rely on site specific linear and non‐linear regression water temperature (Tw) subroutines forced solely with observed air temperature (Ta) may not accurately estimate Tw in mixed‐use urbanizing watersheds where hydrogeological and land use complexity may confound common Tw regime assumptions. A nested‐scale experimental watershed study design was used to test Tw model predictions in a representative mixed‐use urbanizing watershed of the central USA. The linear regression Tw model used in the Soil and Water Assessment Tool (SWAT), a non‐linear regression Tw model, and a process‐based Tw model that accounts for watershed hydrology were evaluated. The non‐linear regression Tw model tested at a daily time step performed significantly (P < 0.01) better than the linear Tw model currently used in SWAT. Both regression Tw models overestimated Tw in lower temperature ranges (Tw < 10.0 °C) with percent bias (PBIAS) values ranging from ?28.2% (non‐linear Tw model) to ?66.1% (linear regression Tw model) and underestimated Tw in the higher temperature range (Tw > 25.0 °C) by 3.2%, and 7.2%, respectively. Conversely, the process‐based Tw model closely estimated Tw in lower temperature ranges (PBIAS = 4.5%) and only slightly underestimated Tw in the higher temperature range (PBIAS = 1.7%). Findings illustrate the benefit of integrating process‐based Tw models with hydrologic models to improve model transferability and Tw predictive confidence in urban mixed‐land use watersheds. The findings in this work are distinct geographically and in terms of mixed‐land use complexity and are therefore of immediate value to land‐use managers in similarly urbanizing watersheds globally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
994.
An approach based on the category of limiting equilibrium analysis is proposed to consider the reinforcing effect of one row of vertical piles on slope under seismic conditions. The approach is based on an uncoupled formulation in which the pile response and slope stability are considered separately. Closed‐form equations are derived, allowing the yield acceleration coefficient to be determined for giving pile characteristics. Results were compared with those obtained using another limit equilibrium method. The effects of pile location on the effectiveness of increasing seismic stability of the slope–pile system were elucidated. It was found out that the piles should be installed in the middle–upper part of the slope to achieve greatest safety, but the pile length and other possible failure modes should be checked carefully in design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
Nearby catchments in the same landscape are often assumed to have similar specific discharge (runoff per unit catchment area). Five years of streamflow from 14 nested catchments in a 68 km2 landscape was used to test this assumption, with the hypothesis that the spatial variability in specific discharge is smaller than the uncertainties in the measurement. The median spatial variability of specific discharge, defined as subcatchment deviation from the catchment outlet, was 33% at the daily scale. This declined to 24% at a monthly scale and 19% at an annual scale. These specific discharge differences are on the same order of magnitude as predicted for major land‐use conversions or a century of climate change. Spatial variability remained when considering uncertainties in specific discharge, and systematic seasonal patterns in specific discharge variation further provide confidence that these differences are more than just errors in the analysis of catchment area, rainfall variability or gauging. Assuming similar specific discharge in nearby catchments can thus lead to spurious conclusions about the effects of disturbance on hydrological and biogeochemical processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
996.
An imaging‐based automated large‐scale particle image velocimetry (LSPIV) system for flash flood monitoring is developed and deployed in a mountainous stream in the Longchi Catchment, Chengdu, China. This system is built from a low‐cost Raspberry Pi board‐level computer with a camera module, which can acquire continuous images/videos automatically at programmed intervals. The minimum quadratic difference algorithm tracks surface patterns as flow tracers to estimate the distribution of surface velocities. Meanwhile, a stereo imaging‐based ‘virtual pole’ method has been developed to reconstruct the three‐dimensional topography with a stereo digital camera, and a cross‐sectional bathymetry has been generated without manual surveying. The varying water stage and water surface gradient, which are critical parameters that affect image rectification and surface velocity measurements, can also be directly resolved by applying the two imaging modules together. Discharge can then be estimated with the velocity–area method through selected cross sections. A flash flood that occurred between 24 July 2014 and 25 July 2014 is selected for analysis. The water surface level reconstructed from image processing was validated with marked water levels, and a good agreement was found with a root mean square error of 3.7 cm. The discharge recorded during the flood recession process ranged from approximately 3.5 to 27 m3/s. The rating curve obtained can be well described by a power function, and the linear regression suggested a Manning's n roughness coefficient of 0.18 of one specific cross section. Some limitations of the presented large‐scale particle image velocimetry system are also put forward, and possible solutions are provided for future improvements. With these proposed upgrades, the system can provide valuable datasets of flash floods in steep mountainous streams, which are critically needed for improving our understanding and modelling of many hydrological processes associated with flood generation, propagation and erosion, as well as for real‐time forecasting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
Abstract

Since the beginning of the 1990s, the Aral Sea is made of two separate entities: the Small Aral in the north and the Great Aral in the south. In this study, the water and salt balance of the Great Aral is analysed using newly available data: on the one hand, altimetric data of the sea level provided by the TOPEX/Poseidon satellite; and on the other, climate data provided by the ECMWF and NOAA within the framework of global climate re-analysis. These data indicate that the Great Aral received a mean groundwater inflow of about 4 km3 year-1 between 1993 and 2001. Without this contribution, the Aral Sea would disappear even faster than is being observed today. Moreover, the temporal resolution of the data shows a systematic phase difference between the model prediction and satellite measurements. This phase shift is considered to be due to the formation of temporary lakes between the last station measuring the Amu-Darya discharge and its mouth in the Great Aral.  相似文献   
998.
Flow regulation is widely known to modify the thermal regime of rivers. Here, we examine the sensitivity of an empirical approach, the Equilibrium Temperature Concept (ETC), to detect both the effects of hydraulic infrastructures on the annual thermal cycle and the recovery of the thermal equilibrium with the atmosphere. Analysis was undertaken in a Pyrenean river (the Noguera Pallaresa, Ebro basin) affected by a series of reservoirs and hydropower plants. Equilibrium temperature (Te) is defined as the water temperature (Tw) at which the sum of all heat fluxes is zero. Based on the assumption of a linear relationship between Te and Tw, we identified changes in the TeTw regression slope, used as an indicator of a thermal alteration in river flow. We also assessed the magnitude of the alteration by examining the regression slope and its statistical significance. Variations in the regression parameters were used as indicators of the influence of factors other than atmospheric conditions on water temperature. Observed Tw showed a linear relationship with Te at all river stations. However, the slopes of the TeTw relationship appeared to be lower in the reaches downstream from hydraulic infrastructures, particularly below large dams. A seasonal analysis indicated that TeTw relationships had higher slopes and lower p‐values during autumn, while no significant differences were found at other seasons. Although thermal characteristics did not strongly depend on atmospheric conditions downstream of hydraulic infrastructures, the river recovered to pre‐alteration conditions with distance downstream, indicating the natural tendency of water to attain thermal equilibrium with the atmosphere. Accepting associated uncertainties, mostly because of the quality of the data and the lack of consideration of other factors influencing the thermal regime (e.g. discharge), ETC appears to be a simple and effective method to identify thermal alterations in regulated rivers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
999.
A combined geomorphological–physical model approach is used to generate three‐dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were between 7 and 80 km in length, and were considerably less extensive than during pre‐LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575 ± 22 m and 1035 ± 41 m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.4°C reduction in mean July temperature, and 200 mm a?1 reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region's aridity precluded the development of large continental ice sheets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1000.
Haiyun Shi  Guangqian Wang 《水文研究》2015,29(14):3236-3246
Due to climate change and its aggravation by human activities (e.g. hydraulic structures) over the past several decades, the hydrological conditions in the middle Yellow River have markedly changed, leading to a sharp decrease in runoff and sediment discharge. This paper focused on the impacts of climate change and hydraulic structures on runoff and sediment discharge, and the study area was located in the 3246 km2 Huangfuchuan (HFC) River basin. Changes in annual runoff and sediment discharge were initially analysed by using the Mann–Kendall trend test and Pettitt change point test methods. Subsequently, periods of natural and disturbed states were defined. The results showed that both the annual runoff and sediment discharge presented statistically significant decreasing trends. However, compared with the less remarkable decline in annual rainfall, it was inferred that hydraulic structures might be another important cause for the sharp decrease in runoff and sediment discharge in this region. Consequently, sediment‐trapping dams (STDs, a type of large‐sized check dam used to prevent sediment from entering the Yellow River main stem) were considered in this study. Through evaluating the impacts of the variation in rainfall patterns (i.e. amount and intensity) and the STD construction, a positive correlation between rainfall intensity and current STD construction was found. This paper revealed that future soil and water conservation measures should focus on areas with higher average annual rainfall and more rainstorm hours. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号