首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5623篇
  免费   593篇
  国内免费   466篇
测绘学   179篇
大气科学   173篇
地球物理   976篇
地质学   1494篇
海洋学   265篇
天文学   2788篇
综合类   122篇
自然地理   685篇
  2024年   38篇
  2023年   76篇
  2022年   115篇
  2021年   122篇
  2020年   114篇
  2019年   182篇
  2018年   104篇
  2017年   122篇
  2016年   130篇
  2015年   139篇
  2014年   197篇
  2013年   199篇
  2012年   209篇
  2011年   237篇
  2010年   166篇
  2009年   480篇
  2008年   404篇
  2007年   497篇
  2006年   484篇
  2005年   394篇
  2004年   345篇
  2003年   342篇
  2002年   257篇
  2001年   225篇
  2000年   184篇
  1999年   190篇
  1998年   218篇
  1997年   90篇
  1996年   84篇
  1995年   63篇
  1994年   52篇
  1993年   56篇
  1992年   31篇
  1991年   19篇
  1990年   25篇
  1989年   20篇
  1988年   12篇
  1987年   21篇
  1986年   13篇
  1985年   6篇
  1984年   4篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1971年   2篇
  1954年   2篇
排序方式: 共有6682条查询结果,搜索用时 15 毫秒
81.
Deep images of the Centaurus and Coma clusters reveal two spectacular arcs of diffuse light that stretch for over 100 kpc, yet are just a few kiloparsecs wide. At a surface brightness of m b ∼27–28 mag arcsec−2 , the Centaurus arc is the most striking example known of structure in the diffuse light component of a rich galaxy cluster. We use numerical simulations to show that the Centaurus feature can be reproduced by the tidal debris of a spiral galaxy that has been tidally disrupted by the gravitational potential of NGC 4709. The surface brightness and narrow dimensions of the diffuse light suggest that the disc was corotating with its orbital path past pericentre. Features this prominent in clusters will be relatively rare, although at fainter surface brightness levels the diffuse light will reveal a wealth of structure. Deeper imaging surveys may be able to trace this feature for several times its presently observed extent, and somewhere along the tidal debris, a fraction of the original stellar component of the disc will remain bound, but transformed into a faint spheroidal galaxy. It should be possible to confirm the galactic origin of the Centaurus arc by observing planetary nebulae along its length with redshifts close to that of NGC 4709.  相似文献   
82.
We describe similarity solutions that characterize the collapse of collisional gas on to scale-free perturbations in an Einstein–de Sitter universe. We consider the effects of radiative cooling and derive self-similar solutions under the assumption that the cooling function is a power law of density and temperature, Λ( T , ρ )∝ ρ 3/2 T . We use these results to test the ability of smooth particle hydrodynamics (SPH) techniques to follow the collapse and accretion of shocked, rapidly cooling gas in a cosmological context. Our SPH code reproduces the analytical results very well in cases that include or exclude radiative cooling. No substantial deviations from the predicted central mass accretion rates or from the temperature, density and velocity profiles are observed in well-resolved regions inside the shock radius. This test problem lends support to the reliability of SPH techniques to model the complex process of galaxy formation.  相似文献   
83.
It is the aim of this paper to introduce the use of isotropic wavelets to detect and determine the flux of point sources appearing in cosmic microwave background (CMB) maps. The most suitable wavelet to detect point sources filtered with a Gaussian beam is the 'Mexican Hat'. An analytical expression of the wavelet coefficient obtained in the presence of a point source is provided and used in the detection and flux estimation methods presented. For illustration the method is applied to two simulations (assuming Planck mission characteristics) dominated by CMB (100 GHz) and dust (857 GHz), as these will be the two signals dominating at low and high frequencies respectively in the Planck channels. We are able to detect bright sources above 1.58 Jy at 857 GHz (82 per cent of all sources) and above 0.36 Jy at 100 GHz (100 per cent of all), with errors in the flux estimation below 25 per cent. The main advantage of this method is that nothing has to be assumed about the underlying field, i.e. about the nature and properties of the signal plus noise present in the maps. This is not the case in the detection method presented by Tegmark & Oliveira-Costa. Both methods are compared, producing similar results.  相似文献   
84.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   
85.
We investigate the Gaussianity of the 4-yr COBE DMR data (in HEALPix pixelization) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale–scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE DMR data.  相似文献   
86.
We implement an independent component analysis (ICA) algorithm to separate signals of different origin in sky maps at several frequencies. Owing to its self-organizing capability, it works without prior assumptions on either the frequency dependence or the angular power spectrum of the various signals; rather, it learns directly from the input data how to identify the statistically independent components, on the assumption that all but, at most, one of the components have non-Gaussian distributions.
We have applied the ICA algorithm to simulated patches of the sky at the four frequencies (30, 44, 70 and 100 GHz) used by the Low Frequency Instrument of the European Space Agency's Planck satellite. Simulations include the cosmic microwave background (CMB), the synchrotron and thermal dust emissions, and extragalactic radio sources. The effects of the angular response functions of the detectors and of instrumental noise have been ignored in this first exploratory study. The ICA algorithm reconstructs the spatial distribution of each component with rms errors of about 1 per cent for the CMB, and 10 per cent for the much weaker Galactic components. Radio sources are almost completely recovered down to a flux limit corresponding to ≃0.7 σ CMB, where σ CMB is the rms level of the CMB fluctuations. The signal recovered has equal quality on all scales larger than the pixel size. In addition, we show that for the strongest components (CMB and radio sources) the frequency scaling is recovered with per cent precision. Thus, algorithms of the type presented here appear to be very promising tools for component separation. On the other hand, we have been dealing here with a highly idealized situation. Work to include instrumental noise, the effect of different resolving powers at different frequencies and a more complete and realistic characterization of astrophysical foregrounds is in progress.  相似文献   
87.
The properties of waves able to propagate in a relativistic pair plasma are at the basis of the interpretation of several astrophysical observations. For instance, they are invoked in relation to radio emission processes in pulsar magnetospheres and to radiation mechanisms for relativistic radio jets. In such physical environments, pair plasma particles probably have relativistic, or even ultrarelativistic, temperatures. Besides, the presence of an extremely strong magnetic field in the emission region constrains the particles to one-dimensional motion: all the charged particles strictly move along magnetic field lines.
We take anisotropic effects and relativistic effects into account by choosing one-dimensional relativistic Jűttner–Synge distribution functions to characterize the distribution of electrons and/or positrons in a relativistic, anisotropic pair plasma. The dielectric tensor, from which the dispersion relation associated with plane wave perturbations of such a pair plasma is derived, involves specific coefficients that depend on the distribution function of particles. A precise determination of these coefficients, using the relativistic one-dimensional Jűttner–Synge distribution function, allows us to obtain the appropriate dispersion relation. The properties of waves able to propagate in anisotropic relativistic pair plasmas are deduced from this dispersion relation. The conditions in which a beam and a plasma, both ultrarelativistic, may interact and trigger off a two-stream instability are obtained from this same dispersion relation. Two astrophysical applications are discussed.  相似文献   
88.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   
89.
The standard method of measuring rotational splitting from solar full-disc oscillation data, based on maximum-likelihood fitting of multi-Lorentzian profiles to oscillation power spectra, systematically overestimates the splitting. One of the reasons is that the maximum likelihood estimators (MLE) become unbiased only asymptotically as the number of data tends to infinity; for a finite data set they are often biased, inducing a systematic error. In this paper we assess by Monte Carlo simulations the amount of systematic error in the splitting measurement, using artificially generated power spectra. The simulations are carried out for multiplets of degree     2 and 3 with various signal-to-noise ratios, linewidths and observing times. We address the possible use of non-MLE estimators that could provide a smaller or negligible systematic error. The implication for asteroseismology is also discussed.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号