首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   394篇
  国内免费   499篇
测绘学   243篇
大气科学   318篇
地球物理   745篇
地质学   878篇
海洋学   201篇
天文学   219篇
综合类   94篇
自然地理   244篇
  2024年   10篇
  2023年   24篇
  2022年   51篇
  2021年   61篇
  2020年   94篇
  2019年   108篇
  2018年   104篇
  2017年   104篇
  2016年   128篇
  2015年   109篇
  2014年   123篇
  2013年   234篇
  2012年   141篇
  2011年   140篇
  2010年   118篇
  2009年   117篇
  2008年   140篇
  2007年   168篇
  2006年   155篇
  2005年   125篇
  2004年   86篇
  2003年   84篇
  2002年   79篇
  2001年   69篇
  2000年   61篇
  1999年   46篇
  1998年   41篇
  1997年   43篇
  1996年   27篇
  1995年   29篇
  1994年   32篇
  1993年   18篇
  1992年   13篇
  1991年   25篇
  1990年   13篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有2942条查询结果,搜索用时 15 毫秒
31.
The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.  相似文献   
32.
All geochemical measurements require the taking of field samples, but the uncertainty that this process causes is often ignored when assessing the reliability of the interpretation, of the geochemistry or the health implications. Recently devised methods for the estimation, optimisation and reduction of this uncertainty have been evaluated by their application to the investigation of contaminated land. Uncertainty of measurement caused by primary sampling has been estimated for a range of six different contaminated land site investigations, using an increasingly recognized procedure. These site investigations were selected to reflect a wide range of different sizes, contaminants (organic and metals), previous land uses (e.g. tin mining, railway sidings and gas works), intended future use (housing to nature reserves) and routinely applied sampling methods. The results showed that the uncertainty on measurements was substantial, ranging from 25% to 186% of the concentration values at the different sites. Sampling was identified as the dominant source of the uncertainty (〉70% of measurement uncertainty) in most cases. The fitness-for-purpose of the measurements was judged using the optimized contaminated land investigation (OCLI) method. This identifies the optimal level of uncertainty that reduces to overall financial loss caused by the measurement procedures and the misclassification of the contamination, caused by the uncertainty. Generally the uncertainty of the actual measurements made in these different site investigations was found to be sub-optimal, and too large by a factor of approximately two. The uncertainty is usually limited by the sampling, but this can be reduced by increasing the sample mass by a factor of 4 (predicted by sampling theory). It is concluded that knowing the value of the uncertainty enables the interpretation to be made more reliable, and that sampling is the main factor limiting most investigations. This new approach quantifies this problem for the first time, and allows sampling procedures to be critically evaluated, and modified, to improve the reliability of the geochemical assessment.  相似文献   
33.
The three most important components necessary for functioning of an operational flood warning system are: (1) a rainfall measuring system; (2) a soil moisture updating system; and, (3) a surface discharge measuring system. Although surface based networks for these systems can be largely inadequate in many parts of the world, this inadequacy particularly affects the tropics, which are most vulnerable to flooding hazards. Furthermore, the tropical regions comprise developing countries lacking the financial resources for such surface-based monitoring. The heritage of research conducted on evaluating the potential for measuring discharge from space has now morphed into an agenda for a mission dedicated to space-based surface discharge measurements. This mission juxtaposed with two other upcoming space-based missions: (1) for rainfall measurement (Global Precipitation Measurement, GPM), and (2) soil moisture measurement (Hydrosphere State, HYDROS), bears promise for designing a fully space-borne system for early warning of floods. Such a system, if operational, stands to offer tremendous socio-economic benefit to many flood-prone developing nations of the tropical world. However, there are two competing aspects that need careful assessment to justify the viability of such a system: (1) cost-effectiveness due to surface data scarcity; and (2) flood prediction uncertainty due to uncertainty in the remote sensing measurements. This paper presents the flood hazard mitigation opportunities offered by the assimilation of the three proposed space missions within the context of these two competing aspects. The discussion is cast from the perspective of current understanding of the prediction uncertainties associated with space-based flood prediction. A conceptual framework for a fully space-borne system for early-warning of floods is proposed. The need for retrospective validation of such a system on historical data comprising floods and its associated socio-economic impact is stressed. This proposal for a fully space-borne system, if pursued through wide interdisciplinary effort as recommended herein, promises to enhance the utility of the three space missions more than what their individual agenda can be expected to offer.  相似文献   
34.
A new earthquake catalogue for central, northern and northwestern Europe with unified Mw magnitudes, in part derived from chi-square maximum likelihood regressions, forms the basis for seismic hazard calculations for the Lower Rhine Embayment. Uncertainties in the various input parameters are introduced, a detailed seismic zonation is performed and a recently developed technique for maximum expected magnitude estimation is adopted and quantified. Applying the logic tree algorithm, resulting hazard values with error estimates are obtained as fractile curves (median, 16% and 84% fractiles and mean) plotted for pga (peak ground acceleration; median values for Cologne 0.7 and 1.2 m/s2 for probabilities of exceedence of 10% and 2%, respectively, in 50 years), 0.4 s (0.8 and 1.5 m/s2) and 1.0 s (0.3 and 0.5 m/s2) pseudoacclerations, and intensity (I0 = 6.5 and 7.2). For the ground motion parameters, rock foundation is assumed. For the area near Cologne and Aachen, maps show the median and 84% fractile hazard for 2% probability of exceedence in 50 years based on pga (maximum median value about 1.5 m/s2), and 0.4 s (>2 m/s2) and 1.0 s (about 0.8 m/s2) pseudoaccelerations, all for rock. The pga 84% fractile map also has a maximum value above 2 m/s2 and shows similarities with the median map for 0.4 s. In all maps, the maximum values fall within the area 6.2–6.3° E and 50.8–50.9° N, i.e., east of Aachen.  相似文献   
35.
Under the assumptions of triangular cross section channel and uniform stable flow, an analytical solution of the minimum ecological in-stream flow requirement (MEIFR) is deduced. Based on the analytical solution, the uncertainty of the wetted perimeter method is analyzed by comparing the two techniques for the determination of the critical point on the relationship curve between wetted perimeter, P and discharge, Q. It is clearly shown that the results of MEIFR based on curvature technique (corresponding to the maximum curvature) and slope technique (slope being 1) are significantly different. On the P-Q curve, the slope of the critical point with the maximum curvature is 0.39 and the MEIFR varied prominently with the change of the slope threshold. This indicates that if a certain value of the slope threshold is not available for slope technique, curvature technique may be a better choice. By applying the analytical solution of MEIFR in the losing rivers of the Western Route South-to-North Water Transfer Project in China, the MEIFR value via curvature technique is 2.5%-23.7% of the multi-year average annual discharge, while that for slope technique is 11%-105.7%. General conclusions would rely on the more detailed research for all kinds of cross-sections.  相似文献   
36.
The application of steam-assisted gravity drainage (SAGD) to recover heavy oil sands is becoming increasingly important in the northern Alberta McMurray Formation because of the vast resources/reserves accessible with this mechanism. Selecting the stratigraphic elevations of SAGD well pairs is a vital decision for reservoir evaluation and planning. The inherent uncertainty in the distribution of geological variables significantly influences this decision. Geostatistical simulation is used to capture geological uncertainty, which is used can be transformed into a distribution of the best possible well pair elevations. A simple exhaustive calculation scheme is used to determine the optimum stratigraphic location of a SAGD well pair where the recovery R is maximized. There are three basic steps to the methodology: (1) model the uncertainty in the top continuous bitumen (TCB) and bottom continuous bitumen (BCB) surfaces, (2) calculate the recovery at all possible elevation increments within the TCB and BCB interval, and (3) identify the elevation that maximizes R. This is repeated for multiple TCB/BCB pairs of surfaces to assess uncertainty. The methodology is described and implemented on a subset of data from the Athabasca Oilsands in Fort McMurray, Alberta.  相似文献   
37.
38.
The mathematic theory for uncertainty model of line segment are summed up to achieve a general conception, and the line error hand model of εσ is a basic uncertainty model that can depict the line accuracy and quality efficiently while the model of εm and error entropy can be regarded as the supplement of it. The error band model will reflect and describe the influence of line uncertainty on polygon uncertainty. Therefore, the statistical characteristic of the line error is studied deeply by analyzing the probability that the line error falls into a certain range. Moreover, the theory accordance is achieved in the selecting the error buffer for line feature and the error indicator. The relationship of the accuracy of area for a polygon with the error loop for a polygon boundary is deduced and computed.  相似文献   
39.
裂隙型单斜介质中弹性系数的计算及波的传播特性研究   总被引:3,自引:1,他引:3  
根据Hudson等关于裂隙介质弹性系数计算的扰动理论及Bond变换矩阵原理,给出了各向同性介质中含多组垂直裂隙时等效弹性系数的计算方法。计算了含两组斜交的垂直裂隙形成的单斜各向异性介质中的等效弹性系数,并根据Christoffel方程推导、得出水平面内平面波传播的相速度和群速度随方位变化的特性。  相似文献   
40.
A stochastic channel embedded in a background facies is conditioned to data observed at wells. The background facies is a fixed rectangular box. The model parameters consist of geometric parameters that describe the shape, size, and location of the channel, and permeability and porosity in the channel and nonchannel facies. We extend methodology previously developed to condition a stochastic channel to well-test pressure data, and well observations of the channel thickness and the depth of the top of the channel. The main objective of this work is to characterize the reduction in uncertainty in channel model parameters and predicted reservoir performance that can be achieved by conditioning to well-test pressure data at one or more wells. Multiple conditional realizations of the geometric parameters and rock properties are generated to evaluate the uncertainty in model parameters. The ensemble of predictions of reservoir performance generated from the suite of realizations provides a Monte Carlo estimate of the uncertainty in future performance predictions. In addition, we provide some insight on how prior variances, data measurement errors, and sensitivity coefficients interact to determine the reduction in model parameters obtained by conditioning to pressure data and examine the value of active and observation well data in resolving model parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号