首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   139篇
  国内免费   311篇
测绘学   82篇
大气科学   5篇
地球物理   298篇
地质学   640篇
海洋学   28篇
天文学   1篇
综合类   44篇
自然地理   45篇
  2024年   3篇
  2023年   4篇
  2022年   14篇
  2021年   33篇
  2020年   31篇
  2019年   37篇
  2018年   26篇
  2017年   27篇
  2016年   28篇
  2015年   50篇
  2014年   59篇
  2013年   58篇
  2012年   50篇
  2011年   62篇
  2010年   48篇
  2009年   74篇
  2008年   76篇
  2007年   78篇
  2006年   78篇
  2005年   54篇
  2004年   49篇
  2003年   54篇
  2002年   20篇
  2001年   19篇
  2000年   18篇
  1999年   18篇
  1998年   21篇
  1997年   13篇
  1996年   12篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1143条查询结果,搜索用时 31 毫秒
71.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   
72.
《国际泥沙研究》2020,35(5):431-443
In recent years, the damage caused to human settlements in Japan by large woody debris (LWD) has been increasing. For example, the 2013 Izu Oshima typhoon resulted in a large number of fatalities and missing persons, and the Kagoshima Typhoon Disaster and Northern Kyusyu torrential downpour caused vast infrastructure damage due to the associated LWD. Current countermeasures for preventing LWD are insufficient to maintain the safety of residential areas. One type of protective barrier, the open sabo dam, has been constructed in Japan during the past 30 years. The primary function of open sabo dams is to block the flow of boulders, thereby also reducing sediment flow by reducing the gap size. However, because Japanese open sabo dams are designed specifically for boulder-trapping, the ability of these dams to trap LWD remains uncertain. In particular, many problems have been reported with respect to sediment trapping by driftwood with roots in an open sabo dam setting. The objective of this study was to examine the trapping efficiency of open sabo dams for LWD and sediment. The experimental approach clarified the influence of driftwood, without and with roots, on sediment trapping for a straight-channel flume. The flexible roots of the driftwood were shown to have a significant effect on the sediment trapping efficiency of the dam.  相似文献   
73.
拱坝坝肩三维稳定可靠度分析   总被引:3,自引:0,他引:3  
以随机块体理论为基础,建立了拱坝坝肩三维稳定可靠度分析的计算模型,推导了用全概率法分析其可靠度的基本公式,研制的电算程序用于实际工程,得到了比较合理的计算结果,验证了本方法的可行和实用性。  相似文献   
74.
An attempt has been made to summarise the methods of approach used in assessing the dynamic behaviour and safety of earth and rock-fill dams under seismic shaking until about the present time, from the soil engineer's point of view. Shortcomings of the pseudo-static method, procedures to estimate the permanent deformations, liquefaction effects, and experience gained from the previous events have been reviewed. Observing that the most important cause of instability is the occurence liquefaction during ground motions, cyclic approach and steady-state approach in assessing the liquefaction potential have been addressed and recent practical approaches of analysis and design have been referred. It has been found noteworthy to recall that incidence of failure or serious damage to well-engineered dams has not been experienced, even under strong ground shaking.  相似文献   
75.
大型天然水体的环境效应研究   总被引:1,自引:0,他引:1  
结合典型实例,论述大型天然水体--堰塞湖从形成到消亡过程中产生的灾害链和环境效应链,包括堰塞湖的淹没、边岸再造、堰塞沉积物、次生洪水、永久性不良地质环境的灾害和环境效应对人民生命财产的威胁,以及对水利水电、航运、公路和铁路工程的不良影响。  相似文献   
76.
This modelling study deals with the time‐dependent behaviour of rockfill media, which is of particular interest during the life of rockfill dams. Breakage of rock blocks and crack propagation are the main processes responsible for rockfill creep and collapse. The modelling procedure presented here is performed on two scales: on the rock block scale, where the grain is taken to be an assembly of rigid particles initially endowed with cohesive bonds, and on the rockfill scale, which is taken to involve a set of breakable grains interacting via contact and friction processes. The grain breakage process is described in term of a thermodynamically consistent damage interface model, where the damage is a gradual delayed process. This model was implemented in a non‐smooth contact dynamics code. The effects of the main parameters involved were analysed by performing numerical studies. The ability of the model to predict the creep behaviour of rockfill media is confirmed by presenting several simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
77.
由于大坝位移时间序列数据受各种复杂因素的影响,具有非平稳和非线性等特征,因此,利用传统、单一的时间序列预测模型较难准确地描述大坝位移变形的复杂规律。综合考虑大坝位移时间序列非线性和线性特征,本文提出了一种SVM和ARIMA相结合的时间序列预测模型。将大坝变形的时间序列分为非线性部分和线性部分。针对非线性部分,利用SVM进行滚动预测,并与NAR动态神经网络进行对比,试验表明SVM处理非线性问题具有相对的优势;针对线性部分,通过ARIMA模型对其进行单步滚动预测,综合两项预测结果得到组合模型的预测值。结合大坝实测资料对组合模型进行检验,试验结果表明,SVM-ARIMA组合模型的预测精度高,能更好地描述大坝位移的变化趋势,具有一定的实用价值。  相似文献   
78.
深厚覆盖层上高土石坝极限抗震能力分析   总被引:6,自引:1,他引:5  
针对强震区深厚覆盖层上高土石坝的特点,在三维真非线性有效应力地震反应分析基础上,提出了一套深厚覆盖层上高土石坝极限抗震能力的研究方法。从稳定、变形、防渗体安全等方面,对建在深厚覆盖层上的长河坝高心墙堆石坝的极限抗震能力进行了研究和分析。根据坝坡稳定性、地震残余变形、液化可能性、单元抗震安全性、防渗心墙及坝基防渗墙安全等多角度的评价结果,初步认为,长河坝的极限抗震能力为0.50~0.55g。  相似文献   
79.
甘肃陇南市武都区小水沟泥石流治理防治工程   总被引:2,自引:0,他引:2  
2008年"5.12"汶川特大地震对甘肃省陇南市造成了严重危害。震后次生地质灾害对陇南市城镇村庄、交通和人民群众生命财产安全造成严重威胁。武都区蒲池乡小水沟震后产生了大量的崩塌、滑塌堆积体,一旦遭遇暴雨,极易发生泥石流灾害,直接危及小水沟沟口左岸九年制义务学校一座及沟口两岸居民,因此治理该泥石流沟是十分必要的。通过对当地暴雨特征、地层岩性、地质构造、泥石流固体物质源及形成的踏勘,针对该泥石流具有危险度高,流量大的特点,执行全面规划、重点治理的设计思路,采取了防护、生物工程相结合的综合防治措施。拦挡工程为有效发挥工程泻洪、拦渣、调节、固床、稳坡和控制固体物质补给量,预防沟道下切及沟壑发展,减少泥石流对下游村庄危害,起到了积极作用;生物工程的主要作用是稳固堤前砂土、减缓水石流流速、减小水石流对护堤的直接冲蚀和破坏、保障堤内居民生命财产安全和耕地的正常使用、增大植被覆盖率,绿化环境等。  相似文献   
80.
本文通过物理模型试验,研究了砾石堤坝、多孔方型鱼礁、堤坝+鱼礁等不同防护措施对岸滩的保护作用。通过测量不同防护措施的波浪透射系数、输沙率、水下坡度角及床面地形变化,并与无防护措施的工况进行对比,结果发现:不同试验条件下堤坝+鱼礁工况的透射系数仅为0.21~0.36,对波浪具有显著的消减作用;同一水位不同防护措施下的输沙率由大变小依次为:堤坝、堤坝+鱼礁、无工程、鱼礁;堤坝迎浪面的水下坡度角随极限波高呈现先增大、后减小的趋势,堤坝工况的水下坡度角约是堤坝+鱼礁工况的2~4倍;对于近岸的地形恢复,堤坝+鱼礁工况的效果比较明显,且对岸滩附近的侵蚀较少。堤坝+鱼礁的防护措施可明显减小波浪的透射系数,增加向岸输沙率,对恢复近岸地形、保护岸滩有显著作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号