首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3934篇
  免费   481篇
  国内免费   179篇
测绘学   281篇
大气科学   255篇
地球物理   1721篇
地质学   1224篇
海洋学   359篇
天文学   33篇
综合类   84篇
自然地理   637篇
  2024年   13篇
  2023年   23篇
  2022年   43篇
  2021年   81篇
  2020年   174篇
  2019年   144篇
  2018年   128篇
  2017年   193篇
  2016年   179篇
  2015年   153篇
  2014年   177篇
  2013年   404篇
  2012年   113篇
  2011年   145篇
  2010年   129篇
  2009年   178篇
  2008年   263篇
  2007年   253篇
  2006年   241篇
  2005年   212篇
  2004年   184篇
  2003年   138篇
  2002年   113篇
  2001年   98篇
  2000年   115篇
  1999年   109篇
  1998年   98篇
  1997年   99篇
  1996年   69篇
  1995年   69篇
  1994年   49篇
  1993年   53篇
  1992年   32篇
  1991年   24篇
  1990年   22篇
  1989年   20篇
  1988年   20篇
  1987年   8篇
  1986年   12篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1954年   2篇
排序方式: 共有4594条查询结果,搜索用时 781 毫秒
941.
The magnetic method is the oldest and one of the most widely used geophysical techniques for exploring the earth’s subsurface. It is a relatively easy and inexpensive tool to employ, being applicable to a wide variety of subsurface exploration problems involving horizontal magnetic property variations occurring from near the base of the crust to within the uppermost meter of soil. Successful applications of the magnetic method require an in-depth understanding of its basic principles and careful field work, data reduction, and interpretation. Commonly, interpretations are limited to qualitative approaches which simply map the spatial location of anomalous subsurface conditions, but under favourable circumstances the technological status of the method will permit more quantitative interpretations involving specification of the nature of the anomalous sources. No other geophysical method provides critical input to such a wide variety of problems. However, seldom does the magnetic method provide the complete answer to an investigation problem. As a result, it is generally used in concert with other geophysical and geological data to limit its interpretational ambiguities.  相似文献   
942.
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).  相似文献   
943.
Undrained capacity of strip and circular surface foundations with a zero-tension interface on a deposit with varying degrees of strength heterogeneity is investigated by finite element analyses. The method for simulating the zero-tension interface numerically is validated. Failure envelopes for strip and circular surface foundations under undrained planar V-H-M loading are presented and compared with predictions from traditional bearing capacity theory. Similar capacity is predicted with both methods in V-H and V-M loading space while the traditional bearing capacity approach under-estimates the V-H-M capacity derived from the numerical analyses due to superposition of solutions for load inclination and eccentricity not adequately capturing the true soil response. An approximating expression is proposed to describe the shape of normalised V-H-M failure envelopes for strip and circular foundations with a zero-tension interface. The unifying expression enables implementation in an automated calculation tool resulting in essentially instantaneous generation of combined loading failure envelopes and optimisation of a foundation design as a function of foundation size or material factor. In contrast, the traditional bearing capacity theory approach or direct numerical analyses for a given scenario requires ad-hoc analyses covering a range of input variables in order to obtain the ‘best’ design.  相似文献   
944.
This article presents three-dimensional structural optimization in geotechnical engineering for foundations in granular soil. The general design (topology) of a shallow foundation is optimized with respect to its deformational behaviour within the service limit state. The SIMP (solid isotropic material with penalization) method is applied to optimize the distribution of foundation material. The soil is modelled as a hypoplastic material with a constitutive model suitable for optimization using finite element analysis. Two load cases are examined. The optimized topology is validated against two-dimensional optimization and 1g-model test results. The present study proves the applicability and shows the potential of topology optimization in geotechnical engineering.  相似文献   
945.
Energy models are essential for the development of national or regional deep decarbonization pathways (DDPs), providing the necessary analytical framework to systematically explore the system transitions that are required. However, this is challenging due to the long time horizon, the numerous data requirements and the need for transparent, credible approaches that can provide insights into complex transitions.

This article explores how this challenge has been met to date, based on a review of the literature and the experiences of practitioners, drawing in particular on the Deep Decarbonization Pathways Project (DDPP), a collaborative effort by 16 national modelling teams. The article finds that there are a range of modelling approaches that have been used across different country contexts, chosen for different reasons, with recognized strengths and weaknesses. The key motivations for use of a given approach include being fit-for-purpose, having in-country capacity and the intertwined goals of transparency, communicability and policy credibility.

From the review, a conceptual decision framework for DDP analysis is proposed. This three step process incorporates policy priorities, national characteristics and the model-agnostic principles that drive model choices, considering the needs and capabilities of developed and developing countries, and subject to data and analytical practicalities. Finally an agenda for the further development of modelling approaches is proposed, which is vital for strengthening capacity. These include a focus on model linking, incorporating behaviour and policy impacts, the flexibility to handle distinctive energy systems, incorporating wider environmental constraints and the development of entry-level tools. The latter three are critical for application in developing countries.

Policy relevance

Following the Paris Agreement, it is essential that modelling approaches are available to enable governments to plan how to decarbonize their economies in the long term. This article takes stock of current practices, identifies the strengths and weaknesses of existing approaches and proposes how capacity can be strengthened. It also provides some practical guidance on the process of choosing modelling approaches, given national priorities and circumstances. This is particularly relevant as countries revisit their Nationally Determined Contributions to meet the global objective of remaining well below a 2°C average global temperature increase.  相似文献   
946.
3D geological models are created to integrate a set of input measurements into a single geological model. There are many problems with this approach, as there is uncertainty in all stages of the modelling process, from initial data collection to the approach used in the modelling scheme itself to calculate the geological model. This study looks at the uncertainty inherent in geological models due to data density and introduces a novel method to upscale geological data that optimises the information in the initial dataset. This method also provides the ability for the dominant trend of a geological dataset to be determined at different scales. By using self-organizing maps (SOM's) to examine the different metrics used to quantify a geological model, we allow for a larger range of metrics to be used compared to traditional statistical methods, due to the SOM's ability to deal with incomplete datasets. The classification of the models into clusters based on the geological metrics using k-means clustering provides a useful insight into the models that are most similar and models that are statistical outliers. Our approach is guided and can be calculated on any input dataset of this type to determine the effect that data density will have on a resultant model. These models are all statistical derivations that represent simplifications and different scales of the initial dataset and can be used to interrogate the scale of observations.  相似文献   
947.
基于水平衡原理提出了采煤沉陷区的水量平衡控制方程,详细描述了采煤沉陷区积水与多个水文要素之间的作用关系,并在分布式水文模拟的基础上开发了物理机制较强的"河道-沉陷区-地下水"耦合模拟模型。该模型可为采煤沉陷区积水机理、水循环转化机制、沉陷区进一步发展后的积水情势变化预测、沉陷对当地水循环的影响等研究提供定量分析工具。  相似文献   
948.
Hydrogeological processes acting at the margins of confined and unconfined thick carbonate sequences are particularly interesting due to a complex system evolution including partial uplift of fully confined carbonate systems and subsequent erosion of cover layers. We provide insights into this evolution by simulating coupled density-dependent fluid flow and heat transport based on the Buda Thermal Karst (BTK) system (Hungary) in a 2D vertical plane. Applying an equivalent porous medium (EPM) approach using the Heatflow-Smoker finite element model, scenario modelling of three evolutionary steps was carried out between the fully-confined carbonate stage through to partly and completely unconfined conditions over the western ridge. The numerical simulations were used to derive the main evolutionary characteristics of groundwater flow and heat transport patterns for the unconfined and confined parts of the hydrogeologic system. The initial fully-confined state led to the development of thermal convection cells due to the insulating role of the low-permeability confining layer, which facilitates buoyancy-driven flow by restricting the dissipation of heat. Over geological time, these cells were gradually overprinted by gravity-driven flow and thermal advection due to uplift of the west ridge. The limited thickness of the cover allowed sufficient water infiltration into the system, which led to increased cooling. Further uplifting led to a prevalence of gravity-driven groundwater flow. The results highlight the critical role of confining formations on flow patterns, and their effect on heat distribution and dissipation over geological time scales. The results have important implications for heat accumulation as well as for the development of a deep geothermal energy potential in confined carbonates.  相似文献   
949.
Understanding the dynamic interactions between forest ecosystems and water in the Mediterranean region is essential for increasing ecosystem services. Even if many studies were implemented to analyse the variations of water and net primary productivity (NPP) in the last decade, this is still an important research question especially for the Eastern Mediterranean, where the research attempts are limited. The main objective of this study was to carry out a comparative analysis of catchment runoff generation and forest NPP and to reveal their temporal dynamics at basin scale in a semi-arid Mediterranean environment. The methodology consisted three steps: (i) estimating catchment runoff generation by implementing process-based J2000 modelling suite, (ii) modelling NPP of the land cover/use types by adapting an ecosystem-process model (BIOME-Biogeochemical cycles) and (iii) assessing the spatio-temporal variability of NPP and runoff dynamics by incorporating the modelling results with multiple regression analysis. Model simulations showed that temperature highly contributed to NPP variations of needle-leaf forests and grasslands. The multiple regression analysis also indicated that runoff was influenced by elevation, precipitation and forest cover. This relationship showed that the inter-annual variability in forest NPP would relate to the variations in runoff distribution across a small Mediterranean subcatchment.  相似文献   
950.
Three-dimensional (3-D) representations of urban regions have gained much attention because of recent developments in remote sensing and computer graphics technologies. In particular, textured 3-D building reconstruction for a variety of applications has been a popular research topic in recent years. In this study, we present the reconstruction of 3-D building models along with texture selection and mapping. Extracted two-dimensional building patches and normalized digital surface model (nDSM) data are used to generate the 3-D models. To build near-photorealistic 3-D models, the acquired geo-referenced facade textures are associated with the corresponding building facades using an automated GPS-assisted approach. On the other hand, the modelling and texture mapping of the roof structures were carried out manually. The study area is composed of eight housing estates (blocks), where a total of 110 buildings were analysed. The whole study area was modelled, with facade textures, in less than 1 min of processor running time with an acceptable level of accuracy. The texture mapping was carried out using MATLAB’s Virtual Reality Toolbox?.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号