首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5393篇
  免费   999篇
  国内免费   1436篇
测绘学   714篇
大气科学   874篇
地球物理   1199篇
地质学   2777篇
海洋学   919篇
天文学   331篇
综合类   403篇
自然地理   611篇
  2024年   25篇
  2023年   84篇
  2022年   194篇
  2021年   222篇
  2020年   239篇
  2019年   312篇
  2018年   233篇
  2017年   244篇
  2016年   258篇
  2015年   283篇
  2014年   364篇
  2013年   397篇
  2012年   344篇
  2011年   363篇
  2010年   276篇
  2009年   384篇
  2008年   413篇
  2007年   361篇
  2006年   394篇
  2005年   337篇
  2004年   303篇
  2003年   227篇
  2002年   221篇
  2001年   167篇
  2000年   177篇
  1999年   156篇
  1998年   139篇
  1997年   110篇
  1996年   106篇
  1995年   86篇
  1994年   84篇
  1993年   68篇
  1992年   65篇
  1991年   36篇
  1990年   37篇
  1989年   24篇
  1988年   23篇
  1987年   10篇
  1986年   12篇
  1985年   11篇
  1984年   13篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1954年   4篇
  1882年   1篇
  1880年   1篇
  1877年   1篇
  1875年   1篇
排序方式: 共有7828条查询结果,搜索用时 362 毫秒
41.
本文对北部湾三维潮波进行了数值研究,并将所得结果与现有观测资料作了比较。通过比较发现两者相当一致。文中还绘制了M_2和K_1分潮的同潮图,并对其作了讨论。可以断定,北部湾的日潮优势是由日潮共振所引起的。M_2和K_1分潮流的水平分布表明,强流区位于它们各自的蜕化无潮点附近。还讨论了分潮流的铅直结构,可以看出这种结构十分接近实际分潮流场的特征。  相似文献   
42.
北黄海沉积物——水界面反硝化速率及影响因素研究   总被引:4,自引:0,他引:4  
探讨近海氮的循环机制,采用乙炔抑制法和现场静态箱法对北黄海夏季局部海域的反硝化速率进行了研究,该海域反硝化速率在2.5~5.8μmol/m2.h之间,平均4.85μmol/m2.h。影响其反硝化速率的主要因素为溶解氧,其次是温度。北黄海的反硝化速率低于珠江口和长江口海域。  相似文献   
43.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   
44.
本文以~3H—TdR掺入法观察911对小鼠脾淋巴细胞增殖反应的影响并用CTLL细胞检测了其对IL—2的作用。体外实验结果表明,911对小鼠脾淋巴细胞增殖反应有明显的增强作用,以0.5μg/ml的浓度效果最为明显,相对增殖指数RPI可达200%;体内实验则以5mg/kg体重ip,连续7d效果最好,相对增殖指数RPI可达176%;911用药组小鼠IL—2的产生量均高于对照组,以5mg/kg和10mg/kg效果最好。以上实验证明,这一多糖是一种有希望的新免疫调节药物。  相似文献   
45.
海水冷却技术   总被引:10,自引:1,他引:10  
城市用水中约 5 0 %是工业冷却水。海水代替淡水作为工业冷却用水——海水冷却 ,是解决我国沿海城市和地区淡水资源危机问题的重要途径之一。海水冷却技术包括海水直流冷却技术和海水循环冷却技术 ,目前我国基本具备了具有自主知识产权的海水(直流、循环 )冷却关键技术。寻求政府在资金、政策等方面的大力支持 ,加强有关行业、院所、企业的“强强联合”,适时借鉴国外先进的海水冷却塔技术 ,加快产业化技术示范 ,是推进海水循环冷却技术快速发展的必由之路  相似文献   
46.
The absorption of anthropogenic CO2 and atmospheric deposition of acidity can both contribute to the acidification of the global ocean. Rainfall pH measurements and chemical compositions monitored on the island of Bermuda since 1980, and a long-term seawater CO2 time-series (1983–2005) in the subtropical North Atlantic Ocean near Bermuda were used to evaluate the influence of acidic deposition on the acidification of oligotrophic waters of the North Atlantic Ocean and coastal waters of the coral reef ecosystem of Bermuda. Since the early 1980's, the average annual wet deposition of acidity at Bermuda was 15 ± 14 mmol m− 2 year− 1, while surface seawater pH decreased by 0.0017 ± 0.0001 pH units each year. The gradual acidification of subtropical gyre waters was primarily due to uptake of anthropogenic CO2. We estimate that direct atmospheric acid deposition contributed 2% to the acidification of surface waters in the subtropical North Atlantic Ocean, although this value likely represents an upper limit. Acidifying deposition had negligible influence on seawater CO2 chemistry of the Bermuda coral reef, with no evident impact on hard coral calcification.  相似文献   
47.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
48.
The natural human female hormones oestrone and 17β-oestradiol have been implicated in the disruption of endocrine systems in some wildlife adjacent to sewage effluents. The sorption behaviour of these two compounds under estuarine conditions was studied by spiking either 2.55 μg of oestrone or 2.65 μg of 17β-oestradiol in kinetic experiments. In equilibrium experiments, 3 ng of oestrone or 3.2 ng of 17β-oestradiol was added in each of the centrifuge tubes. Sorption onto sediment particles was relatively slow, with sorption equilibrium being reached in about 70 and 170 h for oestrone and 17β-oestradiol, respectively. The effects of a variety of environmental parameters on sorption were studied including salinity, sediment concentration (SC), the presence of a third phase, particle size and, also, surfactant concentrations. Results show that although salinity did not induce any statistically significant effect on the sorption of 17β-oestradiol, it did statistically enhance the sorption of oestrone, and a salting constant of 0.3 l mol−1 was derived. The partition coefficient for both compounds decreased with increasing sediment concentration, a phenomenon that has been widely reported and attributed to the presence of colloids (which could enhance dissolved concentrations). In this paper, the true partition coefficients for sediment particles (Kptrue) and colloidal particles (Kctrue) have been calculated, and a Kptrue value of 141 and 102 ml g−1 was obtained for oestrone and 17β-oestradiol, respectively. In addition, Kctrue values for oestrone (222×102 ml g−1) and 17β-oestradiol (135×102 ml g−1) were two orders of magnitude higher than their respective Kptrue values, suggesting that the colloidal particles are significantly stronger sorbents for natural oestrogens than sediment particles. Particles of different sizes were found to have different partition coefficients due to the strong relationships between partition coefficients for the two compounds and particulate organic carbon (POC) contents and specific surface areas (SSAs). The presence of a surfactant was shown to reduce the partition coefficients for the two compounds, although its concentrations being used were higher than those normally found in the natural environment.  相似文献   
49.
Zooplankton sampling has been carried out by the Continuous Plankton Recorder (CPR) survey since the 1930s enabling the study of long-term changes in plankton populations, the elucidation of seasonal patterns of abundance, and more recently providing zooplankton biomass estimates for ecosystem models. Data for zooplankton abundance collected by CPR tows in the Western English Channel (between 1988 and 1998) were compared to vertically integrated samples collected from station L4 off Plymouth, UK. Comparisons were made for locally abundant copepods (including Acartia, Calanus, Para/Pseudocalanus, Centropages, Oithona and Temora) collected by CPR and WP-2 nets. All dominant species recorded at L4 were also common to the CPR data. However, the position of the taxa in the two datasets was not equivalent. Seasonal cycles revealed by CPR data were significantly similar to those recorded throughout the water column at L4 for most taxa. However, absolute levels of abundance differed for the two datasets: abundances were underestimated by CPR samples when compared to those of vertically integrated samples by a factor of between 2 and 35, with the exception of Centropages. The differing mesh sizes (200 and 270 μm) of the WP-2 net and CPR mesh could only partially explain these differences in abundance, implying that the behaviour of individual taxa and their depth in the water column also influenced the abundance recorded.  相似文献   
50.
崂山花岗岩地区含锶、偏硅酸矿泉水的形成机理   总被引:1,自引:0,他引:1  
报道了崂山花岗岩地区矿泉水的特征。指出其矿泉类型为含锶、偏硅酸型,并讨论了其形成机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号